AD-A194 943 Report: NCSU/DLA-87/1 CDRL A004 . MANUFACTURING TECHNOLOGY FOR APPAREL AUTOMATION Phase II and III Activity Edwin M. McPherson North Carolina State University School of Textiles Box 8301 Raleigh, NC 27695-8301 15 July 1987 Interim Report for First Half Year 1987 Contract DLA900-87-C-0509 (January - July) Approved for public release; distribution is unlimited. Prepared for Defense Logistics Agency Production Management Support Office DLA-PR Cameron Station Alexandria, VA | TABLE OF CONTENTS | |--| | Page | | Summary | | Preface | | Introduction | | 1.2 Phase II | | 1.4 Phase IV | | Phase I, Project Management | | Phase II, Garment Subassemblies | | Phase III, Recommend a Set of Modularized Work Unit Groups 12 | | | | | | | | | | | | | | | | | | OTIS | | OTIC
COLY
INSPECTED | | (7/100 | | COLY INEPECTED | | Accession For | | Accession For NTIS GRAMI DTIC TAB | | Accession For | | Accession For HTIS GRAAI DTIC TAB Unannounced Justification By | | Accession For NTIS GRAMI DTIC TAB Unannounced Justification By Distribution/ | | Accession For NTIS GRAAI DTIC TAB Unannounced Justification By Distribution/ Availability Code | | Accession For NTIS GRAAI DTIC TAB Unannounced Justification By Distribution/ Availability Code | | Accession For | | | | | |--------------------|-----------|-----|--|--| | NTIS GRA&I | | | | | | DTIC TAB | | | | | | Unannounced [] | | | | | | Justification | | | | | | By | | | | | | Availability Codes | | | | | | | Avail and | /or | | | | Dist | Special | • | | | | Ĥ-/ | | | | | ### SUMMARY NCSU has specified design concepts for apparel material handling units for the purpose of reducing the labor content in the production of apparel or military sewn products. The design concepts have been offered to existing equipment producers for bid on all or part of the equipment units. The modules specified include pickup and placement devices, orienting and alignment devices, equipment feeding devices and, finally, dispose or stacking devices. Wherever practical, existing commercially proven equipment is to be utilized or modified to satisfy systems requirements. Flexibility in equipment is sought through the use of programmable computers or computer chips. The selection of a vendor to produce all or elements of the system has been guided by the vendor's demonstrated capability to produce original equipment at market value costs. Commercially viable equipment must generate operating cost savings which will recapture the equipment investment within a reasonable time span. If the modules developed do not do this, then the apparel industry will not buy the units. A primary constraint in this project is the requirement that the modules be an attractive investment for apparel manufacturers. Only one vendor stayed within these bounds. At the time of this interim report, a contractor has been selected; however, an award cannot be made until a formal six months contract extension is provided by DLA to NCSU. Based on an oral approval, this report includes an adjusted MMP chart which reflects activity to date. Parallel activity to vendor selection includes studies on the assembly of garments and definition of flexibility within an apparel context. This activity is proceeding on schedule. Seed Described From the Day of the Seed ### PREFACE The monthly interim reports are summarized in this semiannual report. Activity to date has included work performed by Ms. Carol Carrere Dr. T. G. Clapp Dr. H. Hamouda Dr. T. J. Little Mr. E. M. McPherson Dr. W. K. Walsh As well as other staff and graduate students as needed. PARTICULA CONTRACTO DE PROPERTOR DE CONTRACTOR CONTRACT 3 ### INTRODUCTION - 1.0 Under the contract signed by DESC 12/16/86 and received by the NCSU School of Textiles 1/2/87, agreed to activity has been divided into five phases, of which the first four are to be immediately undertaken by NCSU within the base period. There are: - 1.1 Phase I, Project Management. Provide, in accordance with paragraph 3.1 of the Statement of Work (SOW), North Carolina State University's Technical Proposal, Manufacturing Technology for Apparel Automation, April 86. Project management shifts in its requirements between phases. After setting up the initial Management Master Plan (see appended chart), there are basic Department of Defense accounting, reporting and review activities which apply to all phases. This means that North Carolina State University had to put in place reporting and accounting controls at the outset. Monitoring and managing the project becomes more complex as vendors are reviewed and selected. Working with vendors requires field reviews by appropriate NCSU staff or by consultants as problems arise. From time to time, it is anticipated that reliable students may work on the vendor premises to check progress and assist where appropriate. 1.2 Phase II, Establishment of Garment Subassemblies. Provide, in accordance with paragraph 3.2 of the SOW, Attachment 1, Section C, North Carolina State University's Technical Proposal, Manufacturing Technology for Apparel Automation, April 1986. A requirement for extending use of the modularized work station to as broad a base as seems reasonable is one of the tasks outlined in the DLA objectives. This requires further investigations of operation sequences and assembly parts in both military and civilian apparel. In one sense this activity is a market survey to determine potential users of work station groups. Manipulation of this data base should provide insight into future areas for automation as well as a basis for establishing the rules of flexiblity within an apparel environment. Phase III, Recommend a Set of Modularized Work Unit Groups. Provide, in accordance with paragraph 3.3 of the SOW, Attachment 1, Section C, North Carolina State University's Technical Proposal, Manufacturing Technology for Apparel Automation, April 1986. There are several inventor/entrepreneurs as well as a number of small to medium equipment firms which have been evaluated to determine which individuals or firms are able to bring modularized equipment into practical use at a reasonable price. This analysis involves not only prior history of reliability but also such other items as financial stability, employed manpower, the skills of the firms' manpower, and the shop equipment. Because of the broad scope of the apparel automation project, units may be spread over more than one vendor or the vendor may subcontract some elements being produced. As an example, an electronics shop may be on all control systems while a mechanical shop is used for mmovement mechanisms. Where subcontractors are proposed, they must also be visited. Phase IV, Design, Construction and Testing of Modularized Work Unit Groups. Provide, in accordance with paragraph 3.4 of the SOW, Attachment 1, Section C, North Carolina State University's Technical Proposal, Manufacturing Technology for Apparel Automation, April 1986. NCSU is planning to provide for a staff presence to assist and work with the vendor or subcontractor. As an example, graduate students from the School of Engineering may be utilized in preparing drawings for small firms which lack adequate staff. The activity here will be largely that of monitoring progress against pre-established bench marks. ### PROGRESS BY PHASES (2 January - 15 July 1987) ### Phase I, Project Management. Under this phase an MMP activity chart (Appendix I) was prepared. Each month progress on the project was indicated by marking off the point of activity as shown in Appendix I for 6/15/87. This reporting format was reviewed. It was suggested that as an MMP report, it could be improved by coding anticipated trip activity and by noting the dollar value for each phase. At the same time it was reported bidders on the equipment could not produce it within 12 months (i.e., AMF 2 years, ARK 18 months, Singer/Tech-Style 17 months). The MMP charts were, as a result of this discussion, extended by six months which would allow the vendor/builders a total of 18 months to complete and test the first work cell (see Appendix II). Appendix II shows the level of activity for the first six months of the contract. This is the first report utilizing the MIL-STD-847B of 7 November 1983 which was received 7/14/87. The DD Form 1473 report documentation page will be prepared by DLA and will be forwared to ONRR and DESC. To sum up project management activity to date, seven reports have been prepared and forwarded to DESC and DLA. A ten member Industrial Review Board (IRB) has been reviewed by DLA. Calls were made to the prospects. Invitations to join the board to oversee this contract's activities were mailed 7/2/87. Eight members have accepted the invitation. Industry - IRB members - invited by mail 7/2/87: *Manny Gaetan Bobbin *Max Tripp Sunbrand *Ernst Schraymayer -Jet Sew Hubert Blessing Levi Strauss *John Nicolson Tennessee Apparel *John Wilcox K.S.A. (alternate Jerry Armfield) *Joe Off David Adcock Allwear Manufacturing *Dan Gearing DLA *Don Moffitt DPSC NCSU expects the following staff to also participate in the Review Board meetings: > Ed McPherson TMT Principal Investigator TES ME Tim Clapp Hechmi Hamouda TES EE W. K. Walsh TES Associate Dean for Research TMT, Associate Investigator Director, Technology Administrator IE, School of Engineering Trevor Little Karen Hersey Gerry Isley Linda Jackson - Contracts Director, Research Reports sent in to DLA and DESC included a variety of attachments beyond the MMP progress report. Data submitted and attachments to date and resubmitted in this report include: Preliminary equipment specificiations - Appendix III Singer/TechStyle Proposal - Appendix IV Cole Associates Proposal (ARK, Inc.) - Appendix V Daily News Record article (3/9/87) - Appendix VI Daily News Record article (3/13/87) - Appendix VIII Proposal Review questions (Singer and TechStyle) -
Appendix VIII Singer Trip Report - T. Clapp - Appendix IX Singer Trip Report - H. Hamouda - Appendix X Proposal Review questions - ARK, Inc. - Appendix XI ARK Trip Report - T. Clapp - Appendix XII ARK Trip Report - H. Hamouda - Appendix XIII ARK Proposal Clarification - Appendix XIV ^{*}Accepted as of 7/14/87 ## Phase II, Garment Subassemblies. This phase is designed to provide DLA contractors access to improved methods of garment assembly. Prior to the beginning of this current contract, DLA and $(TC)^2$ had financed an exploratory investigation in acquiring operation sequences. This was the data base from which NCSU started. Table I, Products on the Computer File January 1987 | Surgical gowns, drapes | 3 | | |--|-----|--| | Shirts; work, dress, long sleeve, short sleeve | 20 | | | Jeans; men's, youth, ladies' | | | | Pants; work, dress, slacks | | | | Coveralls | | | | Men's coats | | | | Hosiery | 4 | | | Lingerie | 12 | | | Sleepwear | 4 | | | Sweaters | 3 | | | | 333 | | This computer file was built from operation sequence data gathered in the beginning. This file contains 333 sequences. The file states the operation, operation time, equipment, and indicates by sequence number how to set up a production line. To this initial data base, NCSU has added those operation sequences provided by DSPC and some additional sequences provided by industry (211 sequences). Approximately 85 more sequences have been provided by DuPont and (TC)² sources. In order to make this data available in a useful comparative form, NCSU had to increase the memory of the apparel lab computer; purchase linkage hardware and software to join with an IBM PC; purchase an IBM PC; install the commingled system; buy software that will allow TI data to be drawn into the IBM system; buy and install a data management system; establish links with the ApparelNet - Network; and finally write programs to rearrange the data in varying sequences so that data could be reviewed. Samples of the results of some of these programs are included in the appendices. Style Number and Style Description Operation Description Styles in Each Operation Percent Contribution of an Operation to a Style based on: SAM OP SAM TL x 100 Appendix XV Appendix XVI Appendix XVII Appendix XVIII As these illustrations show, the new file has a substantial amount of trade name or firm reference still to be deleted. In addition, there are still some terminology ambiguities to be reconciled. It is anticipated that as comparisons are made between different product lines, still more variances in terminology will require review. The style number and style description report represents an index bringing together like items from whatever source. This index allows the user to rapidly assess the file depth in various apparel areas. It also becomes the basis for seeking out additional operation sequences from other sources to strengthening the data base. Sorting by operation description allows the user to compare standard allowed minutes from several firms or the government for operations carrying the same or similar names. As an example, Page 2 of this report shows several different sewing machines being used to face pockets with a wide range of times being allowed for the operation. When the proposed work cell (Appendix III) is completed, these time variations should be eliminated. This file best expresses the fact that there is a wide range of manufacturing approaches in use in the apparel industry. While general products show some commonality in construction techniques, the concensus shows: - 1. A wide variety of manufacturing procedures within similar garments. - A wide variety of labor standards and their components within similar garments. - 3. A wide variety of material handling (throughput) policies and techniques within similar garments. Sorting by the number of styles in each operation is another way of establishing the depth of the data base within any single operation. Eventually this sort will lead to additional areas of investigation for operational improvements. Calculating the importance of any single operation to the labor content of a group of styles is one way of determining the impact of a change on that style's cost. When a group of these operations are combined, the impact on costs increase. As the file is broadened and selected operation groups are captured, a variety of equipment options should emerge. None of this activity could be done by computer until June. Prior to June, operation analyses were done manually. The specification establishing the basis for equipment in Appendix III was manually calculated. As more analytical programs are developed, the uses for the specified production activities in Appendix III should broaden. Phase III, Recommend a Set of Modularized Work Unit Groups. During January Drs. Clapp and Hamouda completed a work cell specification (see Appendix III) which was sent to DLA for review. The specification differs from current automated or semi-automated apparel assembly equipment in that it requires the matching, sewing and final assembly of three cloth parts of irregular shapes. From this beginning, it should be possible at a future time to apply these principles to other sizes and shapes and other garments than the combat trousers (and civilian pants) specified in this work unit. In order to assure widest possible publicity for potential project bidders, two articles were published by The Daily News Record (Men's Apparel Trade Publication). (See Appendix VI 3/9/87 and VII 3/13/87 for articles.) From these articles some phone calls were received expressing interest. The reviewed, corrected and edited specification, together with sample pockets, were sent to nine firms: Hubert Blessing Levi Strauss Richardson TX Bill Cole Cole and Associates/ARK, Inc. John E. Hinkle AMF Richmond, VA Will Joyce TexNology Systems Jim Lower Singer Joe Off AMF Richardson, TX Herman Rovin TechStyle Ernest Schraymayer Jet Sew John Le Tourneur Union Special Inquiries were received from Synergy Company (to produce a full garment by molding), Knoxville Equipment (to provide bobbin thread counters) and Memphis Apparel Service (to provide pocketing). On April 8, 1987, the work cell specification was reviewed by NCSU by Herman Rovin, TechStyle, and Jim Lower, Singer, for the purpose of creating a joint bid. ACCEPTED TOTAL SECTION OF THE SECTIO On April 9, 1987, the work cell specification was reviewed by Bill Cole and Charles Sandborn of ARK, Inc. On April 14, 1987, the work cell specifiation was reviewed by Norman Cleaver of AMF Apparel Equipment Division. By May 15, proposals were received from Singer/Techstyle and ARK, Inc., which are appended (Appendices IV and V). AMF requested an extension in time and advised NCSU that they could not complete the work cell in under two years. Visits were made to Singer/TechStyle and to Cole Associates by Drs. T. Clapp and H. Hamouda for the prupose of evaluating facilities proposal integrity and obtaining specific answers to questions arising from proposal review by NCSU. Copies of questions and trip reports are attached. Proposed Review questions (Singer/TechStyle) - Appendix VIII Singer Trip Report - T. Clapp - Appendix IX Singer Trip Report - H. Hamouda - Appendix X Proposal Review questions (ARK, Inc.) - Appendix XI ARK Trip Report - T. Clapp - Appendix XII ARK Trip Report - H. Hamouda - Appendix XIII ARK Proposal Clarification - Appendix XIV To sum up the proposals, NCSU faced two problems. The Singer/TechStyle proposal at \$793,000 requires more money than was budgeted for the project as well as 17 months to complete versus a specification request for 12 months. The ARK proposal at \$393,000 is within the budget but requires 18 months to complete. An all day meeting was held with Dan Gearing and Don O'Brien to review progress to date. It was decided to request an extension of time for the development of the work cell unit. This request was prepared by Dr. W. K. Walsh and NCSU is awaiting written response. Meetings have been held with Karen Hersey, Director, Technology Administration, in preparation for letting a contract to ARK, Inc. However, no action can be taken until NCSU has a written extension. No notification to either vendor will be made until the extension is received. Another factor has emerged from the Singer/Techstyle proposal. Jim Lower of Singer, who was working with Herman Roven, has left Singer. This makes it doubtful that a valid proposal exists. It is anticpated that equipment negotiations will be completed by 1 August 1987. Then normal monitoring according to checkpoint dates will begin. ### APPENDICES | No. | Title | |--------|--| | I. | Old MMP Graph | | II. | Adjusted MMP Graph | | III. | Preliminary Equipment Specifications | | IV. | | | ٧. | Cole Associates Proposal (ARK, Inc.) | | VI. | Daily News Record article (3/9/87) | | VII. | Daily News Record article (3/13/87) | | VIII. | Proposal Review Questions (Singer/TechStyle) | | IX. | Singer Trip Report - T. Clapp | | Х. | Singer Trip Report - H. Hamouda | | XI. | Proposal Review Questions - ARK, Inc. | | XII. | ARK Trip Report - T. Clapp | | XIII. | ARK Trip Report - H. Hamouda | | XIV. | ARK Proposal Clarification | | xv. | Style Number and Style Description | | XVI. | Operation Description | | XVII. | Styles in Each Operation | | .IIIVX | Percent Contribution of an Operation | | | to a Style based on: | | | SAM OP x 100 | K PARAMANA INA SANASA TERRACULAL TIRRESSAS TERRACULA T 7,8 CHART F: Time Phased Activity for Project (estimated) (This will be subject to change during development of MMP.) N 7 \mathbb{Z} 1 ¥. K À , , [s^{*} N 77 23.55.55. E3.55. ## JUNE 1987 TEXTILES PROPOSAL NO. 86-0849 NCSU-SCHOOL OF DLA 900-87-C-0509 APPENDIX IT X Š Ķ Y 3 The property of the second resi decessori dicecesta (resessori directeratori directessori dicecesta directesso
dicessori de estresta estreta e ## Proposal for 52 MAN STATE AND 25.5 1000 · 交流 # COMBAT TROUSER UNIFORM FRONT POCKET WORK CELL SYSTEM Submitted to: North Carolina State University School of Textiles May 15, 1987 Ç 73% William March 1. 54 22. 12 Ò Ļ 33 - I BID OVERVIEW - I BIDDER QUALIFICATIONS - III PROJECT APPROACH OVERVIEW - IV PROPOSED UNIFORM FRONT POCKET SYSTEM APPROACH - V SYSTEM FEATURES VERSUS SPECIFICATIONS - VI PRODUCTIVITY & USER ECONOMICS - VII SYSTEM DEVELOPMENT SCHEDULING - VIII SYSTEM DEVELOPMENT COST - IX GLOSSARY OT TERMS APPENDIX IY NORTH AMERICAN SEWING PRODUCTS DIVISION May 11, 1987 Professor Edwin McPherson North Carolina State University School of Textiles Department of Textile Engineering and Science Box 8301 Raleigh, NC 27695-8301 Dear Ed: Enclosed is the "bid response" to Dr. Hechmi Hamouda's March 12th letter inviting Singer Sewing to submit a bid to develop, test and apply a flexible, fully-automated robotic work cell to produce combat trouser uniform front pocket work as well as civilian slacks, dress pants and related work wear. The bid reflects a Singer Sewing Company commitment to apply its complete robotic sewing capabilities to the project and a plan to sub-contract major portions of the development stage of the project to Mr. Herman Rovin's company, TechStyle, Inc. As you know, both Singer and TechStyle have already done considerable system development work in fully automated robotic work cells. TechStyle's previous work could be particularly useful in completing the initial production system. Singer Sewing with work sub-contracted to TechStyle, would be willing to accept full responsibility for an integrated system. Ed, we appreciate your inclusion of the Singer/TechStyle joint resource in your bid process and hope that you will conclude that we are the most creative, experienced, capable and financially sound resource to complete this development work. Sincerely, James M. Lower Vice President Robotic Systems John Lower JML/pd 1/1.3 Enc. cc: H. Rovin, President TechStyle, Inc. ## IN BRIEF ## Singer Sewing Div. Names Vento V-P EDISON, N.J. — Vincent R. Vento has been named vice-president, robotic systems for the North American Sewing Products division of Singer Sewing Co. He succeeds James M. Lower, who resigned to pursue other opportunities, the company said. Vento joined Singer in 1958 in the Kearfott division in Wayne, N.J., where he was a prime contributor to developments in the field of inertial navigation. He transferred to the North American Sewing Products division in 1985. Lower, who had been with the firm 22 years, had been head of robotics systems since December 1986. Stephen J. Kind, president of the North American Sewing Products division, said Singer "continues to make rapid strides in commercializing TCTC technology. Current plans call for fabrication by the end of the year of three transfer lines for automating the sewing of trouser side seams, inseams and waistbands, as well as coat back center seams, sleeve outseams, inseams and cuffs." He said Singer has been marketing products of its Manufacturer Applied Robotic Systems (MARS) robotic sewing technology for auto trim application, carpet and rug binding, wash cloth manufacture and carpet sample production. ## I. BID OVERVIEW By copy of this package the Singer Sewing Company, in concert with our primary sub-contractor TechStyle, Inc. (H. Rovin), capable of automatically sewing and stacking a combat trouser uniform front pocket consisting of a pocket, a facing and is submitting this bid to North Carolina State University to supply within one year a production performing in-line system g 7 The proposed system will be capable of accommodating various uniform pocket sizes and civilian pockets as well and will consist of 8 The feed system will also have the capability to load parts consecutively as well as to flip and load parts consecutively or on an alternate modular units which will be used in combination to ply separate, feed, register, combine, join sew, stack and control the final product. While this bid is focused on combining the 3 components of the uniform front pocket, Singer Sewing and TechStyle, Inc. are agreeable to including the in-line capability to also bag the pocket University will receive complete documentation of all parts, system hardware and software and can be assured that all work will conform with This bid includes a commitment from the Singer Sewing Company to not only design and assemble the production unit but to complete and left faced front pockets for a combat trouser (B.D.U.) as per Section 12A through 12F or Mil-T 44047A dated September 9, 1982. The successful in-plant testing consistent with the performance and productivity specifications incorporated in this bid. North Carolina State national standards and defined military specifications. More specifically, the proposed work cell will be capable of producing both right pocket bagging system if elected would do the 12G operations. The system would be designed to produce pockets in four seconds and would achieve at least 90% uptime and 97% part quality performance levels. Modules would be designed for easy hardware changeover to accommodate any variation in style or size that might require more than a production system selling price of approximately \$250,000, it is estimated that any user can achieve a four year payback on the facing simple programming change. With an annual system capacity to produce 3.2 million pockets per year (2 shifts) and with an estimated equipment system even with only 1 shift utilization. Paybacks on 2-shift utilization would be approximately two years. pocket bagging station as well) and Singer Sewing is agreeable to committing to complete a "ready to in-plant test" system by June 15, 1988 if Singer is advised in June by North Carolina State University that Singer and TechStyle have been selected to complete the development of This bid is issued as a fixed price contract for \$720,522 (\$793,000 if North Carolina State University would prefer to include the the system. COCCOUNT TO SELECTION OF THE PROPERTY P ## II. BIDDER QUALIFICATIONS Ø , <u>.</u> Ì ., • ## A. SINGER SEWING COMPANY Singer Sewing is a worldwide leader in the manufacturing and marketing of consumer and industrial sewing equipment. Singer is the acknowledged leader in robotic sewing technology with the application of in-line production and pre-production robotic systems with leading U.S. manufacturers of automotive trim (General Motors, Ford, Chrysler, etc.), textile products (Collins & Aikman, Burlington, J.P. Stevens, etc.) and apparel (Union Underwear, Lee Company, etc.). In addition to the Singer Sewing Company's considerable experience and current capabilities in the field of total system garment automation, Singer is the key commercialization and product application resource of the Textile Clothing Technology Corporation (TC) Singer Sewing and (TC) 4 particular interest in a strong working relationship with North Carolina State University and hope that acceptance of this bid will which provides additional access to leading edge robotic and material handling technology equipment. forge an additional link in that relationship. ## B. TECHSTYLE, INC. FechStyle, Inc. has been in business since 1970, designing and developing specialized machinery for the textile and apparel industries. TechStyle and its Company President, Mr. Herman Rovin have long been recognized as a particularly creative and cost effective resource in the development of soft goods material handling and sewing equipment systems. TechStyle developed and presented the first "Sewbotic Work Cell" system for trouser and jean pocket sewing in the form of a working proof of concept system at the 1984 Bobbin Show in Atlanta, Georgia. This proof of concept system was developed for the U.S. Department University's preliminary equipment specifications closely approximates the proof of concept hardware which still resides at TechStyle's of Commerce (Contract No. 99-26-071-69-30). TechStyle, Inc. was sub-contracted by the Georgia Institute of Technology to engineer, design and build the appropriate hardware. The work cell concept and module description which is profiled in North Carolina State facility in Piedmont, South Carolina. n summary, Singer Sewing is confident of our combined abilities to complete the proposed system development and to complete the obligation within the time period and budget level proposed. manufacturing of the complete Battle Dress Uniform using the Sewbotic Work Cell approach in combination with other robotic vision and material handling systems. The proposal will include both the combat jacket as well as the combat trouser. Most of the flat work (such Inc. will present to North Carolina State University as part of this proposal an overall plan for automated and semi-automated in-line difficult assembly operations will require the use of more complex robotic end-effectors and vision systems with the recognition that In addition to the front pocket system approach which is detailed in the following section, Singer Sewing in concert with TechStyle, as pockets, outseams, etc.) will be handled by Sewbotic Work Cells similar to those incorporated in the front pocket system. More selected operations may still require some direct labor support. system technology and the total technology related to the overall in-line production automation of the complete Battle Dress Uniform. In addition to the above, Singer Sewing will profile the industry-wide civilian application opportunities to apply both the front pocket The foregoing reports will be available to North Carolina State University in June, 1988 in conjunction with the completion of the ## PROPOSED UNIFORM FRONT POCKET SYSTEM APPROACH ≥. . Manufacturer Applied Robotic Systems SYSTEMS ILLUSTRATED IN EXHIBITS 1-3) The proposed work cell known as the Sewbotic Work Cell shall consist of the following
modules. - Three Feeder Modules (includes Ply Separation Module) These units will accept input product (1 for pockets, 1 for facings and 1 for bearers) and will be capable of reliable, repeatable, ply separation and feeding at the rate of one ply per four seconds. The feeder modules will incorporate an adjustable indexing capability and will be equipped with elevator stackers and feed arms capable of taking individual plys directly from cut stacks of material and reliably introducing them to the total work cell - Three Flipper Modules These units will accept single plys from bundles cut face to face and flip over alternate (face down) plys prior to them being transferred to the registration module. For bundles cut all face up, the ply would be held but not flipped to await transfer to the registration module or the entire module eliminated for those who cut all face up. તાં - Four Registration Modules These units will register each of the three pieces of cloth individually and in juxtaposition to each other and will accurately orient them to a fixed starting position. The fourth module will re-orientate the sub-assembly as it exits the first join sew station. က် - completed at their previous registration work stations. The bearer and the pocket will be accurately matched to each other at the combiner module One Combiner Module - This unit will serve to combine the bearer and the pocket to each other after their respective registrations have been for feeding into the follow-on join sew work station. 4 - the facing on the bearer pocket sub-assembly which would then feed the three pieces to a second join sew station module to perform the second sewing operation. Lockstitch machines would incorporate the Singer Automatic Bobbin Changer currently in in-plant use with selected Singer station. This follow-on registration station would work in concert with the facing registration station which would act as a combiner to place Two Join Sew Station Modules - These units will serve to join the bearer to the pocket and to feed the two pieces to a follow-on registration robotic sewing systems. Ś - One Rotary Stacker Module This unit would accept the first production of the finished pocket from the second join sew work station module and follow-on pocket bagging system the rotary stacker would follow the bagging operation with the additional bagging work station included in the stack it in a rotary fashion conducive to being re-fed into the next cell for the next sequential operation (Note: in the case of the proposed production system) ဖ SINGE ## Manufacturer Applied 人 **7**. 7.77 Robotic Sewing ## IV. PROPOSED UNIFORM FRONT POCKET SYSTEM APPROACH - would require. The X,Y, & W axes will all be servo controlled and remotely programmable. The size of each module will be chosen to accommodate Tweive Sewbot Modules - These units will do all the picking, placing and transferring of cloth pieces between the aforementioned modules. All longitudinal transfer direction. They may or may not have a transverse (Y axis) or a rotation (W axis) capability as the particular application Sewbots will have a vertical "Z" motlon capability for picking up or placing parts down. They will all consist of one linear axis (X axis) for the size of the product being assembled. ۲. - of each of the above six modules. In addition, the control module will be capable of programming each of the individual modules and total system Control Module (Console) - This unit will be comprised of microprocessor computer-controls which will direct and monitor the operational status to respond to changes in product size, style or type of material ထ Exhibit 2 profiles the total pocket facing system (Exhibit 3 incorporates the optional proposed pocket closing work celf) Military bearers and facings will be attached to the pocket by folding under the sewn edge and joining them with a 301 type stitch. Civilian pocket facings and welts will also be attached in a similar manner. main control processor. As mentioned previously, the system would produce one faced (2 facings) pocket every four seconds. The The complete cell will occupy approximately 225 square feet including the computer-control console. Each module will be controllable either independently or as a coordinated sector of the total work cell. All modules will be free standing but can be joined together mechanically to form a rigid integral structure. In addition, all the modules will be electronically linked to a hardware will conform to the codes outlined in North Carolina State University's preliminary specificatons. The power requirements for the Sewbotic Work Cell are estimated as follows: . 220V AC-30-10A-50-60HZ . 90 PSI air @ 8-10 CFM . Vacuum-unable to specify at this time SINGER # COMBAT TROUSER UNIFORM FRONT POCKET WORK CELL À Ò Y, **56** 13. Ř 大学 (章) 大学 (大学) .) 3 Ļ 1 Exhibit 3 (Plan View) - Configuration of Modules with Optional Pocket Bagging Work Cell Incoming Bearer and Pocket from Loading Systems/Combiner Modules (See Exhibit 2) , () () ij .} ## SYSTEM FEATURES VERSUS SPECIFICATIONS φ - Robotic Sewing The proposed work cell will be capable of producing faced only front pockets for uniform combat trousers. It will accommodate all sizes. - The proposed work cell will be capable of producing faced only front pockets for civilian slacks, dress pants and work pants (all sizes) - The proposed work cell will produce faced only front pockets for all sizes of civilian pockets falling within the "on-seam" or "casual seams" of dress slacks. (Note: Work pants front pockets fall under the category of 'on-seam' pockets consisting of either one or two facings. Uniform dress trouser front pockets also fall in the 'on-seam' category). - The proposed work cell will be capable of joining other two or three piece assemblies but may require: - Program changing - And/or mechanical change of work stations if different sewing heads are to be used - And/or operator mechanical adjustment. (Note: All work stations will be mounted on wheels and capable of being quickly substituted. Furthermore, all mechanical changes will be simple snap-on tasks. - The entire work cell will be designed in a manner such as to maintain at least a 95% uptime level. - All rotary feeders and stackers will be identical in construction. - All registration modules will be identical in construction. - All sewbots will be identical in construction less those axes that are not required. - All sewbots will be capable of having their end-effectors quickly replaced. - The work station will be capable of being quickly replaced by having it mounted on wheels and aligned with the combiner table. 3 Ž Š . (**:** ## V. SYSTEM FEATURES VERSUS SPECIFICATIONS · Resea - Reseased Cutting of pockets may be hand cut, die-cut or cut by automated cutting systems such as the "Gerber-Cutter". The accuracy of cut parts will of course be better and more conducive to automated assembly if die-cut or Gerber-cut. Tolerance requirements will be established between Singer Sewing/TechStyle and North Carolina State University. - Cutting may be face-to-face or all face up. The integrity of 'shade-match' and/or piece marking will be maintained. The integrity of right side-wrong side (such as the camouflaged surfaces of military pockets, facings and bearings) will be maintained. - sequencing. With the system designed to accommodate parts direct from stack, all ply separation and feeding systems will incorporate Raw product inspection will probably not have to be accomplished prior to entering the work cell, i.e., soiled or bad cloth or partial pieces in the lay, though it might be necessary to sort and tag lays to maintain uptime and the integrity of shade-matching and sensors to accomplish emergency stops for partial pieces and bad cloth. 1 \ \ \ 7 S # 11. PRODUCTIVITY AND USER ECONOMICS Production quantity versions of the automated pocket facing system are projected to cost approximately \$165,000 and to be available to end-users for approximately \$250,000. Since the manual handling and sewing of facings and bearers is approximately six seconds each and since the automated sytem will produce completed assemblies at the rate of four seconds per pocket, the proposed automated system should produce approximately a 4 year payback on approximately \$70,000 to the aforementioned \$250,000 selling price but that this total system would reduce customer paybacks on a 1-shift a 1-shift basis and a 2 year payback on a 2-shift basis. It is estimated that the inclusion of a pocket bagging station section would add basis to approximately 3 years and on a 2-shift basis to less than 2 years. The proposed automated pocket facing system would produce approximately 7,000 pockets per day per shift or a total of 14,000 pockets on requirement (referred to in North Carolina State's production specifications as 2,000 pockets per day minimum) at a selling price which a daily 2-shift basis. This would result in an overall work cell system which would produce seven times the minimum daily unit output only six times the aforementioned defined acceptable level selling price. 855 855 938 * · · S # II. SYSTEM DEVELOPMENT SCHEDULING Š Below is an overview of the total system development schedule: June 1987 - Advice from North Carolina State regarding bid. August 1987 - Complete preliminary definition of design & conduct initial product design review. October 1987 - Complete product design process and begin to order long lead time components. November 1987 - Begin assembly of key modules. December 1987 - Continue assembly of product including testing of critical modules. . February 1988 - Integrate components into a complete system. . March/April 1988 - Test and debug system in-house. . May 1988 - Complete testing and documentation. . June 1988 - Review operating system for release for factory test. We would establish detailed milestones consistent with the above for funding flow and to assure the close
interface and involvement of key North Carolina State program managers. ÷ ASSESSORIA DESCRIPTION OF THE PROPERTY (3.5) E Ç, # VIII. SYSTEM DEVELOPMENT COST Below is a profile of the system development cost for the total work cell from a direct material, direct labor system design and support costs related to assembly of this first unit, we are estimating that the total variable cost to assemble the system will be approximately perspective. Since component volumes for this first initial system will be very small and since there will be extensive additional labor \$446, 199 (approximately 2.5 times the projected cost of production product) The resulting total budgeted cost of \$720,522 summarized below does include overhead absorption but includes no profit for Singer Sewing or module. In addition to the \$446, 199 of direct material and direct labor expenses, we are projecting \$184,323 of combined Singer/TechStyle TechStyle. We expect the production system to be saleable and would like an agreement from North Carolina State University to have the \$125,000 would be available to Singer/TechStyle and \$125,000 would revert to North Carolina State University with the successful in-plant engineering design and drafting cost (Exhibit D) and \$90,000 to cover software programming, field test, start-up and field service support. esting and completion of the project). The monies reverted to North Carolina State could also be used to complete the development and Listed below is a summary of these costs by module (Exhibit A) with the material costs profiled by purchased components (Exhibit B). opportunity for Singer and TechStyle together to share 50% of the revenues of the initial system sale (assuming a \$250,000 selling price, Exhibit C is the direct labor hours and cost associated with the assembly, wiring, testing and model shop work required to complete each esting of the proposed add-on pocket bagging station. \$223,410 Direct Material \$222,789 Direct Labor 222,789 Design & Engineering 184,323 Program Support Costs 90,000 \$720,522 ← のいだれ・ 拾りりんます Note: North Carolina State University will be responsible for coordinating the supply of all pocketing materials required for esting purposes. # TOTAL WORK CELL COST, MATERIAL AND LABOR 7.7.7 Manufacturer Applied Robotic Sewing | TOTAL
COST | \$45,115.80 | 27,132.60 | 17,048.40 | 109,284.80 | 15,038.60 | 32,860.80 | 15,038.60 | 164,328.00 | 20,352.00
\$446,199.60 | |---------------------------|---------------|----------------|---------------|------------------------|-----------------|-----------------------------|----------------|------------|---------------------------| | TOTAL
LABOR
COST | \$21,610.80 | 21,297.60 | 11,588.40 | 61,804.80 | 7,203.60 | 8,560.80 | 7,203.60 | 75,168.00 | 8,352.00
\$222,789.00 | | TOTAL
MATERIAL
COST | \$23,505.00 | 5,835.00 | 5,460.00 | 47,480.00 | 7,835.00 | 24,300.00 | 7,835.00 | 89,160.00 | 12,000.00
\$223,410.00 | | UNITS
PER
CELL | ო | က | က | 4 | 1 | ~ | - | 12 | H | | UNIT | \$15,038.60 | 9,044.20 | 5,682.80 | 27,321.20 | 15,038.60 | 16,430.40 | 15,038.60 | 13,964.00 | 20,352.00 | | LABOR
COST | \$7,203.60 | 7,099.20 | 3,862.80 | 15,451.20 | 7,203.60 | 4,280.40 | 7,203.60 | 6,264.00 | 8,352.00 | | MATERIAL
COST | \$7,835.00 | 1,945.00 | 1,820.00 | 11,870.00 | 7,835.00 | 12,150.00 | 7,835.00 | 7,430.00 | 12,000.00 | | UNIT | FEEDER MODULE | FLIPPER MODULE | PLY SEPARATOR | REGISTRATION
MODULE | COMBINER MODULE | FACE ATTACH
WORK STATION | STACKER MODULE | SEWBOT | CONSOLE | \$356 • \$35555 • \$55555 • \$55555 • \$55555 • \$55555 • \$55555 • \$55555 • \$55555 • \$55555 • \$5555 • \$5555 Ì 100 M 100 US X ASS 838 ASS **)** # MATERIALS AND PARTS COST BREAKDOWN PER MODULE | ITEM | PNEU-MECH
PURCHASED | ELECT
PURCHASED | VENDOR
MFG. | TOTAL
PURCHASE
COST | |--------------------------|------------------------|--------------------|----------------|---------------------------| | FEEDER MODULE | \$4,110.00 | \$1,525.00 | \$2,200.00 | \$7,835.00 | | STACKER MODULE | 4,110.00 | 1,525.00 | 2,200.00 | 7,835.00 | | COMBINER MODULE | 4,110.00 | 1,525.00 | 2,200.00 | 7,835.00 | | REGISTRATION MODULE | 4,850.00 | 3,750.00 | 3,270.00 | 11,870.00 | | FACE ATTACH WORK STATION | 9,800.00 | 8,750.00 | 5,750.00 | 24,300.00 | | FLIPPER MODULE | 905.00 | 200.00 | 540.00 | 1,945.00 | | PLY SEPARATOR | 280.00 | 400.00 | 1,140.00 | 1,820.00 | | CONSOLE | 800.00 | 10,000.00 | 1,200.00 | 12,000.00 | | SEWBOT | 1,580.00 | 3,750.00 | 2,100.00 | 7,430.00 | 大学と 7 355 N. . × ÷, .- # DIRECT LABOR PER MODULE (INCLUDES 20% FRINGE AND 45% 0.H.) Manufacturer Applied Robotic Sewing | œ | |-----------------------| | نب | | z | | STACKER/COMBINER | | ~ | | = | | 촢 | | ب | | ပ | | _ | | ~ | | 1.1 | | $\overline{}$ | | 六 | | \subseteq | | • | | — | | S | | | | _ | | ~ | | - | | _ | | ⊢ | | 0 | | | | œ | | ~ | | % | | R/R | | ER/R | | DER/R | | EDER/R | | EEDER/R | | FEEDER/R | | FEEDER/R | | / FEEDER/R | | RY FEEDER/R | | NRY FEEDER/R | | ARY FEEDER/R | | TARY FEEDER/R | | OTARY FEEDER/R | | ROTARY FEEDER/R | | ROTARY FEEDER/ROTARY | | ROTARY FEEDER/R | | | | | | | | | | ITEM: ROTARY FEEDER/R | | TOTAL | \$2,505.60
3,340.80
835.20
522.00
\$7,203.60 | | 5,011.20
4,176.00
4,176.00
2,088.00
\$15,451.20 | | 2,505.60
2,505.60
2,505.60
1,044.00
\$8,560.80 | |-------|--|---------------------------|---|---------------------------------------|--| | RATE | \$20.88
20.88
20.88
26.10 | | 20.88
20.88
20.88
26.10 | | 20.00
20.88
20.88
2 6. 10 | | HOURS | 120
160
40
20 | | 240
200
200
80 | ATION MODULE | 120
120
120
40 | | | ASSEMBLY
WIRING
TESTING
MODEL SHOP | ITEM: REGISTRATION MODULE | ASSEMBLY
WIRING
TESTING
MODEL SHOP | ITEM: FACE ATTACH WORK STATION MODULE | ASSEMBLY
WIRING
TESTING
MODEL SHOP | ## EXHIBIT C azza Paranan Danasan Banasan Danasana Paranan Danasan Danasan Danasan Banasan Paranan Paranan Paranan Paranan P Ü . . -333 -480 -333 -833 # DIRECT LABOR PER MODULE (INCLUDES 20% FRINGE AND 45% 0.H.) | (VAD) | Manufacturer Applied
Robotic Sewing | |-------|--| |-------|--| | ITEM: FLIPPER MODULE | HOURS | RATE | TOTAL | |---|-----------------------|----------------------------------|--| | ASSEMBLY
WIRING
TESTING
MODEL SHOP | 80
40
120
80 | 20.88
20.88
20.88
26.10 | \$1,670.40
835.20
2,505.60
2,088.00
\$7,099.20 | | ITEM: SEWBOT | | | | | ASSEMBLY
WIRING
TESTING
MODEL SHOP | 80
100
80
32 | 20.88
20.88
20.88
26.10 | 1,670.40
2,088.00
1,670.40
835.20
\$6,264.00 | | ITEM: PLY SEPARATOR | | · | | | ASSEMBLY
WIRING
TESTING
MODEL SHOP | 25
20
40
80 | 20.88
20.88
20.88
26.10 | 522.00
417.60
835.20
2,088.00
\$3,862.80 | | ITEM: CONSOLE | | | | | | 80
120
200 | 20.88
20.88
20.88 | 1,670.40
2,505.60
4,176.00 | ## EXHIBIT D # ENGINEERING, DESIGN AND DRAFTING COSTS 1766 - 1887 - 18 222 929 .\ .\ .\ Ď 3 1 | TOTAL
\$34,900.80 | 34,900.80 | 34,422.40 | 34,422.40 | 13,956.80 | 31,720.00 | |----------------------|---------------------|-------------------|-------------------|---------------------|---------------------| | | | | | | • | | RATE
39.66 | 39.66 | 27.76 | 27.76 | 15.86 | 15.86 | | | | | | | | | HOURS
880 | 880 | 1,240 | 1,240 | 880 | 2,000 | | ENGINEER | ENGINEER | DESIGN | DESIGN | DRAFTING | Dr.AFTING | | ELECTRICAL ENGINEER | MECHANICAL ENGINEER | ELECTRICAL DESIGN | MECHANICAL DESIGN | ELECTRICAL DRAFTING
 MECHANICAL DEAFTING | SECOND DECONOCIONAL DE SECONDO ## GLOSSARY OF TERMS × N XX - () , () , \ \ \ 7 , .: `` Ž, ٦, - Ply A piece of cloth from the cutting room. - Element A piece of cloth that has been worked on but no other piece has been added, i.e.; a hem on a pocket or a hem on a shirt front. Robotic Sewing Ri - Sub-assembly Any two or more pieces of cloth that have been joined together such as a collar or cuff or a pocket with one facing attached က် - Component A sub-assembly that has been completed to its final state before being put on to the final body part, such as a complete faced bagged turned and topstitched pocket or a complete top stitched collar. - Final assembly Completed garment Ś - Single work station A work station that does one operation. ø - Tandem work station A work station that does more than one operation. ζ. - Unit A free standing piece of hardware that does a specific task. In this context, there are the following basic units; also called module: ထ - multi-feeder unit - rotary feeder unit - rotary combiner unit - rotary combiner and clamp unit. This is basically a combiner unit to which clamps have been added to hold more **छ छ दि क्र** - than one piece together. - rotary stacker unit ତିକ୍ ମିକି - sewbot - registration unit ## GLOSSARY OF TERMS 1 3 7 会会 Ĺ X - Sewbotic work cell A combination of any of the above units arranged to perform a specific task. တ် - Single work cell A work cell where only one piece has to be handled or fed. 6. - Dual work cell A work cell where two pieces have to be handled. Ξ. ### Examples - Single work cell ഗ - Dual work cell - Triple work cell - Single work station performing only one sewing operation SWS - Tandem work station **ZWS** - A work cell that works on only one piece and does only one operation S-SWS - A work cell that works on only one piece and does two operations S-TWS-2 - A work cell that works on only one piece but does three operations, etc. S-TWS-3 - A work cell that combines two pieces and performs only one operation on them D-SWS - A work cell that combines three pieces and performs three operations on them T-TWS-3 #### **PROPOSAL** ### FOR THE DESIGN, MANUFACTURE AND TESTING OF PROTOTYPE AUTOMATED WORK CELL SYSTEM FOR THE MANUFACTURE OF COMBAT UNIFORM TROUSER FRONT POCKETS #### PREPARED BY: ARK, INCORPORATED P.O. BOX 636 SHELBYVILLE, TENNESSEE 37160 MAY 15, 1987 APPENDIX I | 82 | enium in | O ACTION OF THE PROPERTY TH | |----------------------------|--|--| | 38 | | | | | TABLE OF CONTEN | (TS | | | CONTENTS | PAGE NUMBER | | \$55 88 555 855 554 | PURPOSE | 1 | | | SCOPE | 1 - 2 | | 333 | DESIGN REQUIREMENTS | 2 - 3 | | 元
シ | DOCUMENTATION | 3 - 4 | | er
S | ECONOMICS | 4 - 5 | | الشو | CONCEPT | | | , | Turn and Divide Machine | 5 - 8 | | . | Facing Serging Machine | 8 - 9 | | | Assembly Machine | 9 | | 233 | Assembly Machine Description | 10 - 14 | | • | DEVELOPMENT | | | , 7 | Concept | 15 | | | Initial Design | 15 | | ••• | Proof of Concept | 15 | | 33 | Initial Prototype | 15 - 16 | | [8 | Actual Prototype | 16 | | ise
N | TIME REQUIREMENTS | 17 | | ES
ES | PRICE AND TERMS | 17 - 18 | | [A | QUALIFICATIONS OF ARK, INCORPORATED | 18 | | r. | | | | ł.,, | | | | | | | #### PURPOSE The purpose of the proposed endeavor is to design, prove the concept, fabricate, test and debug, revise where necessary and prepare for actual testing in an apparel manufacturing plant one automated work cell system for the manufacture of pant front pockets. Military combat trouser uniform front pockets will be the initial product used for this work, but all design and fabrication will be done keeping in mind that the system should be convertible to civilian slacks, dress pants and related work wear. #### SCOPE Trouser front pockets consist of the pocket and two different facings, sometimes referred to as the facing and the bearer. There is a left and right front pocket, the respective parts of which are mirror images of each other. The system must be automatically able to pick up the pocket, locate and register the pocket so that the facing can be properly positioned, transfer this registered assembly to the sewing head, sew the facing, repeat this process for the other facing or the bearer, then reorient this assembly so that the pocket can be properly folded in half, sew the pocket bag and finally stack the completed sub-assembly. The system must be able to accommodate a full range of sizes of combat uniform front pockets which, in turn, assures that it will be able to handle almost all civilian pockets. #### DESIGN REQUIREMENTS The safety, reliability and durability of the equipment to be designed will conform to the National Codes and Standards applicable to and in use in the areas where this equipment will be utilized, i.e. apparel manufacturing plants. The following codes and standard documents will apply. In case of conflict between references, the order of precedence is as shown: - A. The OSHA Codes and Standards - B. The ASME Codes and Standards. - C. The IEEE Electronic Communications Codes and Standards. - D. The Military Specifications. Each module of each given machine will be electronically controlled and monitored by a control unit, both separately and in coordination with other modules. A formal description of the control architecture will be developed that is compatible with or a subset of MAP (Manufacturing Automation Protocol). An error message will be generated by each module in case of improper functioning. The message will be transmitted to the control unit which will interpret it and then transmit a signal to trigger the appropriate action. The operational speed of each module will be optimized and regulated in order to maintain an overall constant flow of product through the robotic system with minimum idle running time at each module. Every effort will be made to keep the required maintenance simple. The control system will provide warning devices indicating trouble spots and machine malfunctions. #### DOCUMENTATION Design documentation will be provided with the prototype showing how the design and equipment meet the technical and safety requirements as specified. Drawings will include the proposed drawing, the initial outline and the connecting detail drawings, and the final assembly cross section drawings with material lists. These documents will be submitted for review and approval and will include a list of all parts and components used in the system, a detailed performance report, a structural design report, and the operating and maintenance instructions including spare parts list and maintenance schedule. #### **ECONOMICS** Existing technology will be used to keep pricing reasonable. Restated, it is not the part of this proposal to invent a better ply separating and pick-up device. Instead, the best commercially available pick-up device for the specific purpose will be incorporated into the design of this system. Likewise, commercially available sewing heads with known reliability and performance will be utilized with little or no modification. It is extremely difficult to predict in advance the cost of an automated work cell system when the system is manufactured in quantity for general use by the apparel industry by an established machinery manufacturer. However, the importance of developing a system that is economically justifiable by most apparel manufacturers is fully understood. Every effort will be made to keep the total price of the mass produced system between \$25,000 and \$40,000 at retail, depending on the rate of production of the final system. Additionally, it is understood that most new apparel manufacturing equipment's retail price is based on its value to the end user in terms of the savings generated rather than on the actual cost of manufacturing the equipment. Thus, the retail price of the resulting system
may well be based on factors other than the actual cost of manufacturing the system. #### CONCEPT Our concept of the entire system is three separate stand-alone machines, each with its own purpose, for the reasons detailed in the description of each machine, which follows: #### Turn and Divide Machine Many apparel manufacturing plants spread and cut fabric in pairs where possible. Alternate layers of fabric off the roll are spread on a cutting table face to face. After cutting, each cut stack contains alternate left and right parts facing each other in the stack. These parts are mirror images of each other. There are advantages and disadvantages to pair cutting when compared to ply cutting where all of the fabric is spread face up (or face down) and the resulting cut stacks are all left parts or all right parts. The primary advantage of pair cutting is that corresponding parts (i.e. the left front pocket and the right front pocket for a given pair of pants) end up the same size and shape even if the manual cutting machine operator has not followed the pattern line exactly. Another advantage is that pair spreading is quicker (requires less labor) than face one way spreading, when the spreading is done manually. The primary disadvantage of pair cutting is in the sewing room because, when the pattern parts are marked randomly to achieve the best fabric utilization, the statistical odds are that 50% of the time the part on top of the stack will not be the part needed next by the operator. For example, the operator is ready to sew the right pocket but the left pocket is on top of the stack. The left pocket must be picked up and temporarily disposed of to make the right pocket available to the operator for sewing. This disadvantage has an even greater effect on automated sewing systems. Obviously, an automated system designed to sew from pair cut parts must be able to (a) recognize which piece is on top of the stack, (b) temporarily remove and hold or discard the unneeded piece, (c) then pick up and orient the correct piece. This must be repeated for each individual part of the sub-assembly being produced. There is a trend away from pair cutting in the industry, especially by larger manufacturers whose volume enables them to justify automated spreading and cutting equipment, such as Gerber cutting. The accuracy of automated cutting negates the primary advantage of pair cutting. Additionally, ply marking frequently offers fabric utilization advantages over pair marking because there are twice as many pattern parts in the marker and this improves the opportunity to arrange the patterns to optimize fabric use. Restated, a ply spread is twice as long and half as high as a pair spread for a given quantity of garments. For the reasons given above, it is proposed that the first machine in the system be a turn and divide machine. Its purpose will be to take a stack of pair cut parts and separate it into separate stacks of left and right parts. This machine would only be needed by those apparel manufacturers who spread and cut fabric in pairs. Obviously, an apparel manufacturer using automated equipment producing ply cut parts already has separate stacks of left and right parts. Turn and divide machines are not new technology. Most of the components are available commercially. We have manufactured turn and divide machines since 1982. Productivity varies depending on the fabric and the part size, but is generally in the 1500 to 2000 pieces per hour range. #### Facing Serging Machine Prior experience has taught us that automatically orienting fabric and guiding it through folders, although possible, is both more difficult and less reliable than other construction methods. Because of this we prefer to eliminate fabric folding where possible on automated systems. Military specifications allow for the facing and bearer edges to either be serged or folded under. We propose that the facing and bearer edges be automatically serged by a separate, stand-alone machine. The serging machine will be self programming with a closed loop control system. It will serge the edge of either facings or bearers of any size that can be handled on the 24"x24" work surface without readjustment or reprogramming. A stack of ply cut facings or bearers is placed in the loading tray. The machine automatically picks up the top ply using a commercially available ply separate and pick-up device (such as JetSew's Clupicker), orients and transports the part to the needle, serges the edge with automatic edge guiding, cuts the thread and stacks the completed piece. Productivity, based on 10 stitches per inch of 503 type stitching as required by the military specifications, is estimated at 1136 pieces per hour, or sufficient facings and bearers for 2272 pair of pockets per 8 hour shift. Productivity will be somewhat greater on smaller parts such as typical commercial slack pocket facings and bearers. Another reason for proposing that the small parts serging machine be a separate unit is because of its other potential uses, such as automatically serging work pant flies. #### Assembly Machine The assembly machine will be by far the most complex of the three. It will have the ability to merge the three parts of the sub-assembly, feed, register and position the facing and bearer on the pocket, attach them to the pocket, and finally fold the pocket in half and sew it into a bag. Because of this complexity, the assembly machine will be described in a separate section which follows: #### Assembly Machine Description The assembly machine will be designed to assemble the three components of both left pockets and right pockets. For practicality, the expected mode of operation will be to assemble a stack (or bundle) of left front pockets, then quickly re-program the machine to assemble the mating bundle of right front pockets. As stated, the machine is designed to work off of ply cut parts (or pair cut parts that have been turned and divided in two separate stacks) and with facings and bearers whose appropriate edges have been pre-serged. The only folder included in the assembly machine is the device to fold the pocket in half and prepare it for bagging. The assembly machine will include the following modules: #### Feeding Module There will be three feeding modules, one for the facing, one for the bearer and one for the pocket. Each will utilize the best commercially available ply separating and pick-up device for the specific purpose. Each feeding module will be remotely programmable and in constant electronic two-way communication with the control unit. #### Registration Module The task of the registration module is to orient individual plies in proper position for combination with other plies. There will be three separate registration modules, one to orient the pocket and the facing, another to orient the bearer and the pocket and a third somewhat different module to orient the pocket edges after folding prior to bagging. Each unit will be individually programmable and in constant electronic two-way communication so that it may be monitored by the control unit. #### Combining Module The purpose of combining module is to combine individual parts and position them for sewing. There will be two combining modules, one for the pocket and facing and another for the pocket and bearer. Each will be individually programmable and monitored by the control unit. It will be necessary for these two combining modules to work in series because, once combined, the facing will be sewn to the pocket before the bearer is brought into position. #### Sewing Module There will be three separate sewing modules, two of which will be very similar. Prior experience has taught us that, where possible, it is more practical to clamp the fabric pieces to be sewn together and move the sewing head along the appropriate path rather than to guide limp fabrics by a stationary sewing head. This is especially true when omni-directional sewing equipment can be used such as the Pfaff 438 lockstitch (301 stitch) sewing heads planned for attaching the facing and the bearer. Re-stated, it is more practical to accurately control the movement of a rigid mass such as a sewing head as opposed to controlling limp plies of fabric. The third sewing module will contain a safety stitch sewing head with the stitch type 515, 516 or 519 (as required by the military specifications). There is no omni-directional sewing equipment available for these stitch types because the machine must be kept tangential to the sewn path. Therefore, in this case the folded and aligned fabric will be guided through the sewing head. Each sewing module's control system will be remotely programmable and in constant electronic communication with the control unit so that its operation may be monitored. #### Folding Module There will be one folding module. Its purpose will be to fold the pocket in half after the facing and bearer have been attached and align the pocket edges for bagging. This unit will be individually programmable for size changes and will be monitored by the control unit. #### Stacking Module The purpose of the stacking module is to take the completed sub-assembly and stack the bagged pocket for the next use. This unit will be self programming and will also be constantly monitored by the control unit. #### Control Unit The control unit is composed primarily of a microprocessor. Its purpose is to control and monitor the operational status of each of the above modules. In response to monitoring status, the control unit will be able to re-program the modules individually for size or part changes. Additionally, the re-programming procedure may emanate as a response to error messages emitted by the working modules. #### Productivity Productivity of the assembly machine is estimated in the broad range of 500 to 1000 pockets per hour, or pockets for 2000 to 4000 pair of pants per 8 hour shift. #### DEVELOPMENT The development of an
automated system such as this typically takes the following steps: #### Concept Our concept for the proposed system is presented in this proposal. #### Initial Design This is the process of committing the concept to paper in the form of preliminary drawings, specifications and parts list. It includes the initial process of searching the market to select the best commercially available components. #### Proof of Concept As the name implies, this is the first bench top model machine used to prove the basic concepts of the design. It is not intended to ever be a fully functional machine, but it does prove to everyone's satisfaction that the concepts are valid. #### Initial Prototype The initial prototype is the first functional machine, but it is not intended for use on the sewing factory floor; therefore, it may not be designed with the full OSHA guarding or totally automatic controls. In building the initial prototype, we make use of the primary compontents (such as sewing heads) that were purchased for the proof of concept device. The initial prototype phase concludes after the machine has sewed a few hundred dozen production pockets, even though it required special attention during this test. We do not recommend installing the initial prototype on the sewing factory floor for production testing. It is better to bring the work to be sewn to the machine in the shop where the machine was made. The result of initial prototype testing tells us how the final prototype unit needs to be built. #### Actual Prototype This is the first machine designed and built to be installed on the apparel plant manufacturing floor for extensive testing. Again, it makes use of basic components purchased earlier. In fact, it is frequently possible to make the final prototype from the initial prototype without extensive basic rework. #### TIME REQUIREMENTS One of the first steps after awarding the contract should be the development of a Gantt chart with critical path for the complete project. This should be done by the contractor selected working together with appropriate North Carolina State University personnel. ARK's facilities are limited. The project as presented would require between 16 and 18 calendar months for us to complete. The actual starting date would depend upon our workload at the time we are favored with the contract. However, assuming July 15, 1987 is the starting date, the system would be ready for apparel plant testing between November 15 1988 and January 15, 1989. Preliminary testing in our shop could begin several months earlier. #### PRICE AND TERMS We are pleased to quote \$393,000 for the complete project as described. Terms are 10% advance deposit with the contract and regular monthly progress payments over the ensuing term of the contract. Each progress payment, of course, would be fully justified with the appropriate documentation as required. At this time we respectfully decline to bid on individual components or modules. Additional detail needs to be known, such as who we would be working with. Please allow us to reconsider after additional information is available. #### QUALIFICATIONS OF ARK, INCORPORATED ARK has designed, fabricated and installed custom automated machinery primarily for the sewn products industry for the past 17 years. We have earned an excellent reputation for quality, dependability and delivery. References upon request. ## Textile School At N.C. State Seeks Inventors NEW YORK — The School of Textiles at North Carolina State University, Raleigh, N.C., is looking for inventors with products or ideas to take part in a research and development program for the apparel industry. The textile school received a \$1.2 million federal contract from the Defense Logistics Agency, Cameron Station, Va., to develop inexpensive systems for assembling garments, according to visiting associate professor Ed McPherson, who heads the program. The fir t product for development, he said. will be a work center to sew side pockets; for military combat trousers. Other projects using this center will be developed by the agency and North Carolina State University. McPherson said the first system to be developed will have to pick up, put down and align the elements of the pocket, sew both pocket facings to the pocket and then stack the pocker. The center will include transport and positioning of the pocker and its elements for the sewing operation. A requirement of the development, McPherson said, is that it can be converted to use in the production of civilian apparel. It must be low-cost and economical and enable apparel manufacturers to speed up an operation or do more than available from devices in use today. McPherson can be reached at School of Textiles, North Carolina State University, Raleigh, N.C., 27695-8301 or at (919) 737-7871. Prior to joining the staff at the School of Textiles, McPherson was with Kellwood, as director of manufacturing operating systems; H.D. Lee, as chief engineer, and other firms. ing under the weight of imports not be large enough to meet mili DNR the search is on for methods A spokesman for DLA told of rapidly manufacturing military rst product for development will rousers, with other projects ontribute devices, systems ollow. tations of advanced apparel manufacturing technology, solve manufacturing problems, experimethods, develop new equipment and train personnel in the oper ation of advanced equipment this was originally a Department of Commerce project that DLA ive of the 1987 program, called of advanced technology by aphe Apparel Advanced Manufacnouncement states that the objec-Technology Up to three demonstration sites n three different states will be The agency states the program help apparel manu- versities or non-profit research in- ndustry participation in proposed coalitions. Apparel manufache basis of various evaluation actors, including the degree o DESC will procure the services turers, equipment suppliers and be required to form coalitions o apparel and textile manufac apparel manufacturing communi nfluence site selections. NCSU has two things going for orts overlap? A ### Uncle Sam Wants A Stitch in Time BY MATTHEW KASTEN NEW YORK - Uncle Sam will spend more than \$2 million this year so that he doesn't get caught with his pants down in the event of a national emergency. The money is to be pumped into apparel technology research to develop equipment and know-how for speedy production of the latest military field uniforms. Handing out the funds is the Defense (DLA), Logistics Agency Cameron, Va., which last year gave \$1.2 million to the Textile School of North Carolina State University, Raleigh. This year, more than \$2 million is up for grabs to the most qualified parties. 1 26 - 17 to The government is, in effect, saying to apparel manufacturers their equipment suppliers-Uncle Sam Wants You! The money is being spent at a time when many U.S. apparel See UNCLE SAM, Page 7 APPENDIXVII #### PROPOSAL REVIEW 6/ TGC COMPANY: SINGER AND TECHSTYLE BID: \$793,000 (with bagger) TIME FRAME: 12 mo. PRODUCTION PRICE: \$250k AT 3500 pairs/SHIFT QUESTIONS: Are multiple modules similar? (ie: Can the facing feeder be used to feed pockets?) What company has primary responsibility for the project? Who will build the hardware? Who will make the detail drawings? If you were given the contract today, how many people would begin working on the project and how many would be hired for what jobs? If you were asked today to submit detailed drawings, maintenance schedules, ect. for all of the equipment, what percentage of the system information could you provide? How much of this system is commercially available and production proven? Can you have this system ready for production testing in 1 year? Estimated floor space of system 225 sq.ft. (with bagger ?) How many operators are required and at what skill level? How many maintenance personnel are required and at what skill level? Assume pockets are no longer needed, What other small parts can be made using the equipment in the system? How many apparel plants run 2 shifts? What is the average manufacturer's annual production of pockets? System efficiency? $90\% \times 97\% = 87.3\%$ How did you estimate these efficiencies(supporting evidence)? Can system be operated manually in the event of a module failure? Estimate overall maintenance cost. APPENDIX VIII ``` MODULES: 3 FEEDERS; 3 FLIPPERS; 5 REGISTRATION; 1 COMBINER; JOIN/SEW; 1 STACKER; 1 CONTROL MODULE; \varepsilon 13 SEWBOTS; 1 FOLD/BAGGER 30 modules total; 9 different modules FLEXIBILITY: MODULAR: yes STYLE VARIATION: OTHER SMALL PARTS: CONVERSION PERFORMANCE: SIZE TIME: COMPLEXITY (MECHANICAL; ELECTRICAL): SKILL (OPERATOR): STYLE TIME: COMPLEXITY (MECHANICAL; ELECTRICAL): SKILL (OPERATOR): CONSTRUCTION: COMPLEXITY: MATERIALS: ESTIMATED LIFE: MAINTENANCE: SPARE PARTS LIST: ESTIMATED PART LIFE: ESTIMATED MAINTENANCE COST (TIME) / YEAR: LABOR: MATERIAL: LABOR SKILLS REQUIRED: DESCRIBE MAINTENANCE TASKS: ACCESSIBILITY FOR MAINTENANCE: FOLLOW STANDARD CODES (OSHA, ASME, IEEE, MILITARY SPECS): yes MODULAR DESIGN REQUIREMENTS: - 24x24 WORK AREA - FLEXIBLE HEIGHT ADJUSTMENT yes - COMMON MECHANICAL AND ELECTRICAL CONNECTIONS - WHEELS(EASILY TRANSPORTABLE) yes - INDEPENDENT CONTROL SYSTEM - OPERATOR TROUBLE INDICATION SYSTEM ``` COCCOSTO ASSESSABLE DESCRIPTION OF THE COCCOSTO #### TRAVEL REPORT June 8, 1987 TO: Ed McPherson FROM: T. Clapp TGC SUBJECT: Summary of trip to Singer Sewing Company SUMMARY Dr. Hamouda and I visited Singer Sewing Company on May 29, 1987 to examine the technical facilities for developing a combat trouser uniform front pocket work cell system. Technical aspects of the proposed design were also addressed. The facilities and technical staff are adequate to design, construct, and test the DLA front pocket work cell. Singer has experience with a variety of technologies that can be used in the development of the DLA work cell. These technologies include pickup mechanisms,
transfer mechanisms, sewing modules, and control systems. Singer is committed to automating apparel manufacturing. This commitment is illustrated by the (TC)2 program. A large portion of our time was spent reviewing the (TC)2 system and Singer's involvement to develop production systems. Economic justification of these types of systems requires high production schedules and preferably two shift operation. The (TC)2 program is behind schedule, but we were assured that this delay would not affect the DLA project. Singer takes primary responsibility for completing the specifications as presented by NCSU. Although the proposed work cell is designed by Techstyle, Singer does not know how much of the proposed design will be developed. Consequently, it is difficult to assess the technical aspects of the modules in the work cell. Work cell flexibility, mechanical complexity, and efficiency can not be estimated without more details of the design. It is Singer's intentions to negotiate with NCSU and others during an initial product design review scheduled for August 1987 (page 9 in Singer proposal) to make design changes to the proposed work cell. In summary, the technical staff and facilities at Singer are adequate. Singer clearly stated that they are responsible for the project. They stated that they are committed to expanding the work cell to other assembly operations. The modules in the work cell have not been defined by Singer; consequently, the percentage of existing production-proven equipment is unknown and cannot be technically evaluated. #### FACILITIES AND TECHNICAL SUPPORT Singer has two plants in New Jersey. The Fairfield plant primarily supports the development of production (TC)2 systems. The Edision plant is primarily a robotics application center. At the Fairfield plant, we were given a detailed report on the (TC)2 project. Engineering changes to the (TC)2 machine were highlighted. An intensive effort is in progress to apply the (TC)2 technology in a manufacturing environment. New technologies such as vision and robotics are being used in this system. The Fairfield plant has the technical staff and facilities to design, construct, and test a work cell system. At the Edision plant, Singer technology is applied to build sewing systems for a variety of industrial applications. We saw video tapes of Robotic systems developed for the carpet, automotive, and textile industries. In the plant, we saw the front jeans pocket assembly system that was demonstrated at the 1986 Bobbin Show. This system used two Singer MARS robots to transfer and guide the fabric under the sewing heads. This system demonstrated much of the technology that could be applied to the DLA work cell system, but the productivity of the demonstration system was low. The cost of this system was estimated to be \$250,000. We were also shown a machine being developed to take two stacks of material, separate each ply, combine and sew the parts together. This system was in the prototype stage of development. The Singer portion of the DLA project would be developed at the Edision plant. The technical staff and facilities are adequate to develop the DLA sewing system. ### TECHNICAL EVALUATION OF PROPOSED WORK CELL This section involves an inquiry as to the conceptual design, operation, and productivity of the proposed work cell. The conceptual design of the work cell as shown in Exhibits 1, 2, and 3 in the Singer proposal was developed by Techstyle. All of the modules are Techstyle designs. The quotation of the work cell modules are based on the the modules shown in the illustrations. The conceptual design shown in Exhibits 1, 2, and 3 is not necessarily the actual design. A decision as to the actual design has not been determined. Singer has the pieces of technology that may be incorporated in the work cell, but there is no application of this technology in the current proposal. It is thought that preliminary design discussions would be conducted to determine the actual design to be constructed. Therefore, the number of Techstyle designed modules is unknown. The uncertainty of the proposed design made it difficult to ask technical questions relating to individual modules. (Example: Q. Why are the feeder modules round? A. We may not use round feeders. A belt type feeder may be used.) Consequently, questions concerning module design, reliability, flexibility, productivity, and mechanical complexity could not be answered. Questions concerning the work cell were answered in general terms. The work cell is design to produce a pocket every 4 seconds. The maintenance skills to repair the work cell will be minimized. Singer will provide additional maintenance training if necessary. The modules will be portable. The work cell is designed as a series of independent modules controlled by one operator. The operator will monitor the control unit and tend the loading and unloading stations. The question of work cell efficiency was addressed. The 90% efficiency stated on page 1 of the Singer proposal is used for calculating the production rates required in their economic analysis. On page 6, the 95% uptime level of the work cell needs clarification. There exist a serious question concerning the actual efficiency of the work cell given the proposed configuration of modules. Can the modules obtain individual efficiencies high enough to obtain a 95% work cell efficiency? The proposed work cell design has not been critically snalyzed in this report because Singer stated that many of the modules in this design may changed. Singer also stated that the 12 month development period must be extended to 15 months if the bagging module is included in the work cell. MEMORANDUM June 5, 1987 TO: Ed McPherson FROM: H. Hamouda SUBJECT: Report on the proposal submitted by Singer Co. and the field trip to their facility The following paragraphs are my report about the site visit, Dr. Tim Clapp and I had on Friday, May 29, 1987 to the Fairfield, N. J. and Edison, N.J. facilities of Singer Co. This report is also subsequent to the review of the proposal submitted by the same company, and to the discussion, about the technical aspects of the project, we have with the persons submitting the proposal. The proposal submitted to the NCSU, School of Textiles on May 15, 1987 is titled: Combat Trouser Uniform Front Pocket Work Cell System. To my best understanding, the purpose of our site visit was to evalute the facilities where the project, if granted, will be developed. The other purpose was to check the adequacy of the staff and the manpower for technical support, which will be involved with the same project. We were advised not to discuss prices and costs nor to suggest solutions or technical details during this site visit. #### Technical Expertise The concerned contractor technical expertise was attempted to be proven based upon a long presentation about an automated prototype for folding and sewing suits' sleeves. The system was developed and put together for (TC)² from a design made by Draper Lab. During their presentation about the production proven prototypee, a lot of emphasis was made about Singer proficiency in sewing, high-tech system, and their adoption of a sophisticated vision system and its accompanying computer hardware and software. They advanced that their prototype is production proven and that only minor hardware changes will make the (TC)² system able to be used in many other potential applications. The same automated sewing systems developed and built by Singer for (TC)² was upgraded from the initial prototype SNO to SN1 and SN2. The late models are the same as the initial one with some modifications for improvement. Some technical aspect that were encountered during the development of the SNO prototype were also presented such as the use of retroflective surface in order to help enhance the vision system. Few more details about the vision system, the computing software and the vaccum support were also presented during the Singer initial presentation. ### Design Approach 757577 By mean of the Singer presentation about their previous involvment with (TC)² project on other projects, a parallel was attempted to be established between these previous experiences and the DLA project, the reason of our visit. The parallel is in the fact that Singer, backed by their previous achievement and by their reputation, they claimed that this always deliver a production performance version of machine and not a proof of concept prototype. They also claimed that this type approach (theirs) differentiate them from other bidders and that is the reason they believe that their bid should be higher then many other bidders. Even in this type of project where the work cell system, as it was conceived by the preliminary specifications, has never been proven on a production line, Singer will take care on the conversion of this notion from proof of concept to a production performance system. Concerning their technical approach for the design and development of the system, Singer suggested that three persons with previous training at the Draper Lab will be assigned the study, design, and development of this project. The three persons will have a background in system integration, mechanical design, and electrical design, one background per person. A cost reduction design/analysis will feature in the project and also a usage justification for other production application of the system after a definition/analysis of these applications. They stated that they are used to hard demanding customers, and as a manner of fact, the very first project they started with was for a very hard demanding company which they did not mention by name. ### Testing Approach To assure a reliable production functioning of the system and not only a verification of proof of concept, the testing approach will be part of the design. Based on a design review team meeting periodically, most design and testing requirements will
be made. This review process will help decide if such occurences such as the usage of video camera or photovoltaic cell for the initial orientation system. Singer representatives asked for two (2) extra months for production testing of the system and three (3) more months if NCSU, School of Textile decides to add the bagger option which Singer has suggested as an addition to the project. It was also added that \underline{may} be the system will be built initially in South Carolina at Rovin's facilities, then shipped to Fairfield, N.J., for testing. It was added that by building the initial system in S.C facilities, it will make it easier for NCSU, School of Textiles to review and supervise the development of the project. In case of testing difficulties encountered, more testing will be made at the Fairfield, NJ plant. They were not sure if this particular approach will be taken, the final decision will be made by the design review team, once they start working on this project. ### System Operability and Maintenance The modularity concept of the work cell was not well defined for there is no basic design available yet. Although few drawing were supplied with the proposal, the system drawn is only a suggestion based on Rovin's conception of the system. Consequently not much has been mentioned about the system operability and maintenance. Singer representatives suggested that no reprogramming is required by the system for a change of ply size for instance, but for a change of product a data input modification is necessary. The software will be the same, only numerical input will be modified. The electrical and electronic communication and status monitoring and control will be maintained by a full CPU unit. To operate such system, personnel familiar with the equipment is needed. As for the level of familiarity, it was defined as familiarity acquired by a training to the board level. One hour/week of preventive maintenance is necessary, and telephone support will be provided in case of problems where no diagnosis can be made. For occasional help people will be sent out for technical support. For such design, Singer representatives suggested the involvement of endusers during the design and development of the system. Worries about material handlings problem were also mentioned. The need for material handling modules should be looked at for more suggestions. Singers representatives claim that existing work stations for material handling task already exist and has been tested from operability point of view but no production testing has been done yet. Finally it was suggested that a lot of judgements are to be made to determine the level of production, reliability, operability, maintenance, staffing personnel, etc.... #### Conclusion During this field trip to Singer facilities at Fairfield and Edison, NJ and during the discussion we have had with Singer representative, it was made clear that the biddings will come from Singer and not from Rovin, and that Singer will assume total responsability for the carring-on of the project and not Rovin. Rovin's modules, which were introduced through Singer's bidding proposal may be used for the work cell, but more studies and suggestions are needed to determine if that specific model will be the final one. A lot of concern was shown by Singer representatives about the picking technique to be used, which will be the limiting agent for the flexibility of the system. For material handling reasons the system can not be made to be versatile from the type of material to be handled point of view. Although the facility and the in house technical capability and support were very impressive in both the facilities we visited, no final nor concrete perception of the system was presented by Singer. FFFI SECTIONS SECTION OF # PROPOSAL REVIEW SyTGC COMPANY: ARK, INC. BID: \$393,000 TIME FRAME: 16-18 mo. PRODUCTION PRICE: AT 2-4k pairs/SHIFT GENERAL QUESTIONS: What is the average manufacturer's annual production of pockets? Can system be operated manually in the event of a module failure? Estimate overall maintenance cost. Are multiple modules similar? (ie: Can the facing feeder be used to feed pockets?) Who will build the hardware? Who will make the detail drawings? If you were given the contract today, how many people would begin working on the project and how many would be hired for what jobs? If you were asked today to submit detailed drawings, maintenance schedules, ect. for all of the equipment, what percentage of the system information could you provide? How much of this system is commercially available and production proven? Can you have this system ready for production testing in 16 mo.? Estimated floor space of system: How many operators are required and at what skill level? How many maintenance personnel are required and at what skill level? Assume pockets are no longer needed, What other small parts can be made using the equipment in the system? How many apparel plants run 2 shifts? System efficiency? How did you estimate these efficiencies(supporting evidence)? Can system be operated manually in the event of a module failure? ``` Estimate overall maintenance cost. Can we get a sketch of the layout? Can you estimate the TOTAL system cost? How are you going to move the material? Can you estimate the ROI and payback? MODULES: 5 FEEDERS; 2 COMBINERS; 1 TURN/DIVIDE; 1 SERGE; 4 STACKERS; 3 REGISTRATION; 2 SEW(301); 1 SEW(BAG); 1 FOLD; 1 CONTROLLER 21 MODULES TOTAL; 10 DIFFERENT MODULES; ____ COMMERCIALLY AVAIL. FLEXIBILITY: MODULAR: STYLE VARIATION: CONVERSION PERFORMANCE: SIZE: COMPLEXITY (MECHANICAL; ELECTRICAL): SKILL (OPERATOR): STYLE: TIME: COMPLEXITY (MECHANICAL; ELECTRICAL): SKILL (OPERATOR) : MAINTENANCE: SPARE PARTS LIST: ESTIMATED PART LIFE: ESTIMATED MAINTENANCE COST (TIME) / YEAR: LABOR: MATERIAL: LABOR SKILLS REQUIRED: DESCRIBE MAINTENANCE TASKS: ACCESSIBILITY FOR MAINTENANCE: ``` FOLLOW STANDARD CODES (OSHA, ASME, IEEE, MILITARY SPECS): yes sset (the) 333 332 333 5 Tacker VSSVSSVSI DIELEGESSI DILILIOIDIDI DI TILIONIDI D かんかみ Keylstration Modules Feeders Combiners Turn + Divide Serge Stackers Serge Registration Sew (301) Sew (8Ag 515 .) Fold Controller Fold Reg 2010 King (00) 2000 7 Controller ### TRAVEL REPORT June 11, 1987 TO: Ed McPherson FROM: T. Clapp TGC SUBJECT: Summary of trip to ARK, Inc. #### SUMMARY Dr. Hamouda and I visited ARK, Inc. on June 2, 1987 to examine the technical facilities for developing a combat trouser uniform front pocket work cell system. Technical aspects of the proposed design were also addressed. is a small firm that produces machinery and textile related companies. It 18 corporation to Cole and Associates. Cole and primarily consults for apparel and textile related companies. Cole and Associates and ARK, Inc. provide total services to companies. Their experience and knowledge of the apparel manufacturers are tremendous assets in the development of equipment that the systems apparel manufacturers could economically justify and purchase. The facilities and technical staff are adequate to design, assemble, and test the DLA front pocket work cell. ARK, Inc. normally uses a variety of qualified sub-contractors to perform specific tasks such as electrical design and drafting. The conceptual design of the work cell was clearly presented and defended. It is based on many years of apparel manufacturing experience. Approximately 60 to 80 percent of the hardware in the work cell is commercially available to minimize costs and increase the chance of success in production. A primary concern in the design is to assure acceptable production efficiency levels. This is achieved by minimizing direct linking of modules. The work cell requires only one operator who would serve primarily as a tender loading and unloading modules. The work cell is modular and flexible. The turn and divide system can handle many small parts. Serging system can serge bearers, facings, and other small parts with no modifications. The assembly system can quickly switch from right to left pockets. It can be programmed to handle a variety of pocket sizes and styles. These systems are designed to operate independently in remote locations of the plant or be controlled by the main control module. ARK, Inc. stated that a prototype would be ready for extensive production testing in 16 to 18 months from contract approval. ARK, Inc. works closely with a military contractor located 15 miles away. ARK, Inc. suggested that this facility be an ideal location to test the work cell. In summary, the proposal submitted by ARK, Inc. is well founded. The design is solid. ARK, Inc. has the experience in apparel machinery development to accomplish the proposed work. This experience with apparel manufacturers is very important in designing a system that will be productive and economically justifiable. The proposed design reflects this experience. # FACILITIES AND TECHNICAL SUPPORT Inc. is a small firm that is run primarily by two men. These men have extensive experience with the apparel and textile related industries as consultants and machinery manufacturers. ARK, Inc. has five technicians that have multiple skills such as welding, machining, pneumatic control, and electrical These persons are primarily responsible for the installation. assembly, testing, and modification to initial prototypes and production machines. A large portion of the technical support is provided by sub-contractors. ARK, Inc. regularly uses qualified sub-contractors to perform specific tasks such as welding, machining, electrical design, and detailed drafting. example, an electrical design engineer was present during our visit to discuss possible control systems for the work cell. ARK, Inc. described the technical services in the area that would be available to support the development of a DLA work cell. asked them to submit a list of these firms. The facilities at Ark, Inc. are designed primarily for machinery assembly, testing,
and modification. A shop area has the necessary equipment to construct or modify prototype machines. A 6,000 square foot addition has just been completed to expand the facilities. During our visit, we were allowed to see a mechanical system designed by ARK, Inc. for a textile related company. The system concept was innovative. The mechanical design was clean and efficient. The system was well constructed. ARK, Inc. described parts of the system developed by sub-contractors, such as the electrical system, the welded frame, and numerous machine parts. The system was designed to be operated and maintained with similar skills already existing in the company. ### TECHNICAL EVALUATION OF PROPOSED WORK CELL Services Creecesor Secretary Personal Assessment Property Creecesors This section involves an inquiry as to the conceptual design, operation, and productivity of the proposed work cell. The conceptual design discussed during or visit is the same as in ARK, Inc.'s proposal. ARK, Inc. stated that they had tried to combine existing technology to design a productive and affordable work cell. The design is presented as three small systems to achieve the work cell specifications. A turn and divide machine would separate stacks of parts cut face-to-face into stacks of right and left parts. components of the turn and divide machine are commercially available. ARK, Inc. has built a similar turn and divide machine. The machine requires only a tender or part-time operator with no special skills. It is considered to be very flexible because only one location point is required to separate any small part. The machine would be used to separate pockets, facings and bearers with no modifications. The turn and divide machine can run as a separate unit or be controlled be the master control module in the work cell. The turn and divide machine is not directly connected with the other modules for the following reasons: 1) the productivity is much higher than the sewing modules (12,000 to 16,000 pieces per shift), 2) the machine can be located in the cutting room or other desired area, 3) the machine efficiency does not affect other operations, and 4) apparel plants that do not cut face-to-face do not need the turn and divide machine. The second system in the work cell would be a serging system for serging the facings and the bearers. This system consists of a feeder module, a serging module, and a stacker module. The components of this system are also commercially available. The serger will be self programming with a closed loop control system. This system is very flexible because no reprogramming is necessary to serge most small parts. The serger can serge a facing and a bearer with no modifications. The serging machine can run as a separate unit or be controlled be the master control module in the work cell. Only a tender or part-time operator is required to load and unload the system. The serging system is capable of serging enough facings and bearers to produce 4544 pockets per shift. The serging system is not directly connected with the other modules for the following reasons: 1) the productivity is much higher than the sewing modules (9088 pieces per shift), 2) stacks of facings and bearers will be alternately serged, 3) the machine can be located in any desired area, and 4) the machine efficiency does not affect other operations. The third system in the work cell is the assembly system. This system combines and sews the facing and pocket, combines and sews the bearer to the pocket, and bags the pocket. This system consists three feeder modules, three registration modules, two combining modules, three sewing modules, one control module, one folding module, and one stacking module. The feeder, sewing, folding, and stacking modules are commercial units. The technology required to combine and register the parts is available. No additional skills will be required to maintain the system. The skill level of the operator is dependent on the degree of flexibility desired. The proposed design minimizes limp fabric handling by holding the parts stationary during the facing and bearer sewing operations. The sewing head moves along a programmed path. As the parts change styles or sizes the program would change. The control system would contain a range of sizes and styles programmed in storage for operator selection. Additional flexibility would require that an employee be able to program the sewing module when a new style is introduced. ARK, Inc. expressed concern about the system efficiency when three sewing modules are linked directly. ARK, Inc. asked if direct linking was a requirement. The NCSU specifications do not make this requirement. I asked ARK, Inc. to submit a conceptual sketch of their work cell. They said that they would submit one based directly on their proposal and would submit an alternative sketch addressing their concern about system efficiency. The complete work cell would require one operator. The operator would tend the various loading and unloading stations. The control module would monitor the work cell, alert the operator of any problems, and provide instructions required to correct the problem. Approximately 60 to 80 percent of the machines in the proposed work cell is commercially available. Development work is required on portions of the work cell, but this work is minimized by incorporating a high percentage of existing technology. The proposed work cell design is clearly presented and defended. The design reflects a knowledge of apparel machinery and apparel manufacturing. <u>Obsessora Obsessora Obsessora Obsessora Obsessora Obsessora Obsessora Obsessora Obsessora Obsessora Obsessora</u> Memorandum June 10, 1987 TO: ED McPherson FROM: H. Hamouda Technology | Property | Property | hand the second SUBJECT: Report on the proposal submitted by Cole & Associates and the field trip to their facility The following paragraphs are my report about the site visit, Dr. Tim Clapp and I had on Tuesday, June 2, 1987 to the Shelbyville, TN. facilitites of Cole and Associates. This report is also subsequent to the review of the proposal submitted by the same company, and to the discussion, about the technical aspects of the project, we have with the concerned company representatives. The proposal submitted to the NCSU, School of Textiles on May 15, 1987 is titled: Proposal for the Design, Manufacture and Testing of Prototype Automated Work Cell System for the manufacture of Combat Trouser Uniform Front Pocket Work Cell System. To my best understanding, the purpose of our site visit was to evaluate the bidder's perception of the project, to evaluate the facilities where the project, if granted, will be developed. The other purpose was to check the adequacy of the staff and the manpower for technical support, which will be involved with the same project. We were advised not to discuss prices and costs nor to suggest solutions or technical details during this site visit. ### Technical Expertise and Facilities • 1535555555 • 12255555 An informal presentation was made by Cole and Associates representative about the size of their facilities and their contents and their technical staff. The in house facilities cover two x 6,000 sq.ft, one of which is in the process of being finished. Cole & Associates is in reality two companies merged together. Coles which is a consulting firm for engineering systems, and Ark which is taking care of the enhancement of the engineering activities. Both copanies together, have designed, built, installed, and trained for production systems they have put together to the standard requirement of the concerned industry. Cole & Associates representatives emphasized the fact their geographical location is a great contributor to their technical expertise. The way they are located and the way they operate allow them to have access to a long list of contractors tied with space industry, NASA, and having experience with high precision work for customers as demanding as the federal government. They claim that they have established a network of highly qualified contractors which are located in the vicinity of Cole & Associates facilities. It was indicated that Cole & Associates major advantages and expertise are the fact that they have extensive apparel background and they are only 15 miles away from Tennessee Apparel, a major pants supplier to the U. S. military. Cole & Associates representative added also that they are closely involved with Tennessee Apparel, (TA), and they proved that alliance by arranging a visit to TA after our site visit to Cole & Associates facilities. Their facility includes a small workshop with basic tool-machinery where they were in the process of mounting and testing a machinery product they built and designed. No drawing facilities nor engineering support were seen during the visit. ### DLA Project Design Approach Province in the second 4% Although no schematic of the work cell system was provided with the proposal Cole & Associates submitted to NCSU, School of Textiles, Cole & Associates representatives seem to have a clear perception of the system configuration. It seems to the bidder that the work cell will be more efficient if part of it, the turn and divide module, was kept at the cutting room. The remaining of the other modules of the work cell will reside on the floor of another designated area. The purpose of the separation is to elliminate the sorting at the work station level, of left and right plies when they are cut face to face. Ultimately, the turn and divide module will be elliminated from the work cell network, once the cutting room start using a Gerber cutter, or other devices which lay the fabric back to face. It was mentioned that the apparel industry is heading toward this last trend of cutting. The design of the work cell will also focus on the fact that the bulk of its expected users are small military apparel contractors who are working on four different
contracts most of the time, and they tend to specialize in one type of garment. Their production rate is in the range of less than 7,000 garment/day. Given this, Cole & Associates representatives believe that the practicality and the pricing of the system to be developed should meet the needs of the expected users mentioned above. The bidder envision the system to be run, controlled, and monitored by a programmable controller unit based on a network of relay system and probably a servo-control capability will be added to the work cell if it seems necessary. The design team will include in house and contracted members with expertise in mechanics, electronic, pneumatic, and fluidistic logic if required to this project. One of the bidders' contractors temporarily participated in our meeting with Cole & Associates representatives, although he was introduced as an electronic expert, he seemed to be knowledgeable in system-control and had suggested the use of servo-control unit to the work cell system. Concerning the material handling, they suggested that they will probably use either a needle or a clue piker depending on the nature of the fabric and the operation. The bidders were not concerned about the problems that may occur with the complexity of material handling. They stated that they will search for the picker which will fulfill the task and they will attach it to the system. ## Testing Approach 322224 PSYSTE . Based on their previous experience and expertise with machinery they have built in the past, and they are building now. They claim they have developed enough skill for testing one-of-a-kind machines that they put together, and it seems that an unwritten testing procedure already exist within the firm. Testing will start first on the lab floor where the first prototype is being built, then the prototype will be moved to a real production environment where more extensive tests will be made. Subsequent adjustments will be done to deliver the product to the specifications agreed upon. Some comfort was shown concerning their feeling about their testing of the turn and divide device for they have previous experience with such equipment. The controlling system which will be used with the work cell will have the ability to indicate, through a CRT, the status of the operation and the problems if any. It will also prompt the operator to take appropriate action. This controlling system will be used extensively during testing for acquisition of data and parameters of the process and for their analysis. #### System Operability and Maintenance No drawings or diagrams were submitted with the proposal about the work cell, although when asked about that, Cole & Associates representatives assured us that a set of drawings of at least the system conception will be made avail- able to us within the two weeks following our site visit. Without these diagrams and drawings, it is difficult to predict the operability of the system and its maintenance. When the bidder was asked about that, they advanced that to operate the system a technician is needed to run the work cell and a mechanic time on the floor is also needed. No specifications were given concerning the level of skill of the technician, nor the amount of time needed from the mechanic to attend and maintain the system. It was also added that some low skill level intervention may be needed. If some change is needed because of product change, the work cell will be flexible enough to take that, no reprograming of the machine will be needed but some small mechanical adjustment will be necessary. In general, it was claimed that the system operability will be run from a centralized communication system linking all the electric and pneumatic networks to a central unit. The protocol between modules will be based on action-reaction principle. No details about maintenance of the work cell were presented only the fact that maintenance will be cost related to the sewing head. In this area, sewing head maintenance, Cole & Associates representatives claim they have in-house expertise and skills. Some details were also given about the floor space the work-cell will occupy: The turn and divide will take 2×4 or 3×3 ft of space from the cuting room, and possibly a surger which will occupy a 4×4 ft area. The entire system will occupy a total area between 100 and 150 sq. ft. #### Conclusion The impression I had from the site visit and the discussion with the bidder was that Cole & Associates is technically able to carry on this project. This opinion is based on the fact of their previous experience with apparel industry and based on the fact that their perception of the system was clear and structured, although no diagram nor drawing of the work cell was provided yet. They also pointed out that as of the date of our disucssion almost 50% of the work cell system as they perceive it is known and available technology, the other half is there too but needs some configuration changes and details to be worked out. Finally a question about the manufacturing rights was raised concerning who will own these rights once the work cell system is built. **4**3 # ALTERNATIVE METHOD # ARK INC. CONCEPTUAL DRAWING OF MODULAR POCKET SYSTEM ## ARK, INCORPORATED # LIST OF SUBCONTRACTORS ## Sheet Metal Fabrication - 1. Redd Sheet Metal Blue Ribbon Parkway Shelbyville, Tennessee 37160 615/684-0339 - Bobo Sheet Metal 804 Union Street Shelbyville, Tennessee 37160 615/684-3706 - 3. Guthrie Machine 2121 North Jackson Street Tullahoma, Tennessee 37388 615/454-9625 # Electrical/Electronic - 1. Richardson Electric, Inc. Amnicola Highway at Appling Street Chattanooga, Tennessee 37401 615/625-2921 - The Automation Center 933 Woodland Street Nashville, Tennessee 37210 615/228-5544 - Arrel Enterprises 2607 Leman Ferry Road Huntsville, Alabama 35800 205/534-5853 # Industrial Plating, Anodizing, Powder Coating 1. Guthrie Machine 2121 North Jackson Street Tullahoma, Tennessee 37388 615/454-9625 - 2. S&H Plating Service 2805 Lebanon Road Nashville, Tennessee 615/889-5095 - 3. Custom Powdercoating 308 Tampa Drive Nashville, Tennessee 615/832-3949 # Parts Fabrication - Simpson & Associates Prince Street Shelbyville, Tennessee 37160 615/684-9807 - 2. J&J Machinists 507 Depot Street Shelbyville, Tennessee 37160 615/684-3810 - 3. Wego Precision Machine Industrial Parkway Shelbyville, Tennessee 37160 615/684-0941 - 4. Guthrie Machine 2121 North Jackson Street Tullahoma, Tennessee 37388 615/454-9625 - 5. Westco Machine Company Old Nashville Highway Murfreesboro, Tennessee 37130 615/895-0033 # EXAMPLES OF ARK MACHINERY # Sewing Elastic Loop Machines for tensionless cutting, forming and sewing of waistband loops for pull on slacks, pantyhose, etc. Rail Seamers (up to 28 feet) primarily for the Home Fashion Industry. Large Area Automatic Sergers and Binders. Automatic Small Part Sergers (Single Ply Guidance). Automatic Pickup Devices to feed PROM controlled tackers. Sleeve Seamers (Double Ply Guidance). Buttonhole Indexers for large parts as shower curtains. Zipper Tape Feeders. Treadle Rod Air Valves. Automatic Three and Four Side Cut and Sew Machines for rectangular products as pillow cases, shop towels, bags, etc. ### Cutting Marker Inspect-Rewind-Cut A Part Machines. GERBERcutter Bristle Washers. GERBERcutter Blade Groover. GERBERcutter Conveyorized Take Off Tables. Flotation Transfer Tables for Fixed Bed GERBERcutters. Custom Cutting Table Flotation Systems for both Gerber and conventional installations. Portable Battery Powered Gantry Cranes for Handling Large Rolls. Turn Custom Trim and Divide Machines. Custom Panel Cutters for Short Lays, Draperies, etc. Custom Mucket Bars for <u>absolute</u> control of spread ends. Rail Seamers for sewing small rolls into large rolls. Fabric Inspection Machines for lofted products. # Warehousing The contract of o Custom Conveyors to handle large fabric rolls. Conveyor Turntables for large fabric rolls. Hanger Diverters and Counters. Finished Goods Box Diverters. Finished Goods Box Compressors. File is "HUNTLE::OUT.TEXT". Printed on June 1:, 1987. Fac- 1. 110-50xx PANTS 110-56XX 118-2941 TYPE IV HORE PANTS LAUNCRY PANT -- D/C BEDFORD CORD PANT - COMMERCIAL 118-70XX HOPE PARIT 118-95XX UNIFORM PANT 7 FLARE 118-7803 12345 DEN MENS - ZIPPER FLY MENS SLIM - ZIPPER FLY MENS JEAN - BUTTON FLY 200-0041 10 200-0141 200-0241 MENS BOOT CUT MENS BOOT CUT MENS BOOT CUT MENS CORD EGOT CUT MENS CORD EGOT CUT STRAIGHT LEG CORDURGY 12 200-0341 13 200-10xx 200-12xx 15 200-14XX 200-15xX 15 MENS EGOT CUT STRAIGHT LEG - THILL EGGT CHT FLARE 200-19XX ıa 200-20XX 200-21XX 4...- -1 200-7241 MENS - HASHED - WAEHED 2: 200-7341 201-0541 MENS SLIM - WASHED MENS BOOT CUT FLARE 23 201-0745 25 201-0941 BOOT CHT FLARE - STRETCH DENIM 25 27 201-23XX 201-24XX FLARE 25 26 202-0341 HIDE 202-0441 HIDE FLARE MENS STRETCH DENIM FLARE MENS STRETCH DENIM FLARE PLARE - CORDUROV PROFORD CORD PROFORD CORD PROFORD CORD PRES PROFORD CONST. POYS BOOT CUT BOYS CORDUROV BOOT CUT 202-0449 WIDE . FLARE 31 31 202 -0941 202-15XX 33 202-16XX 203-0341 203-10xx 35 37 203-15XX 203-14XX 205-0341 205-10XX 39 205-12XX BOYS CORDURBY BOOT CUT RIDER JACKET - DENIM RIDER TACKET - CHRED 205-1411 220-0041 550-10xx MENS WESTERN JACKET JACKET - ROUGH HIDE JACKET - WASHED JACKET - ROVS/YNITH LADIES JACKET FRUIGH HIDE FRUIT JACKET 4151-055 44 47 223-0041 224-1916 FRIT ROYS 225-46XX 240-00-1 51 52 53 BOYS BOOT CUT BOYS BOOT CUT 2-0-7041 240-9949 WASHED 241-0041 5~ 55 241-0041 241-7041 YOUTH TO 56 57 59 241-9547 YOUTH BOOT CUT 241-5969 YOUTH EOUT CLIT 242-0029 BOYS BOOT CHT 126 Sugar ``` File is "HUNTLEY: CHT. TEXT". Printed on Tune 11, 1987. Page 2. 0149 BOYS BOOT CUT BOIS BOOT CUT 140 50 → 1 Bays (BOOT CLIT -41 BOYS BOUT CUT -SHITING -NAPSHITING 242 0504 242-0629 BOYS BOOT CUT 65 65 NAPSUITIUS NAPSUITIUS 242-0749 BOYS BOOT CLIT BOYS BOOT CUT SUITING 242-0829 242-0940 BOYS BOOT CUT FLARE -CGADURGY BOYS BOOT CUT FLARE -CGADURGY BOYS
BOOT CUT SULTING SUYS BOOT CUT SULTING BOYS HUSKY ROOT CUT 37 242-1010 242-15XX 242-1620 242-21x7 242-5041 73 74 75 ENYS BOOT CUT 2-2-7341 242-971X YOUTHS BOOT CUT YOUTHS BOOT CUT YOUTHS BOOT CUT 243-0025 2-3-0109 2-3-0249 YOUTHS FOOT CUT FIGOTOUT . 79 80 243-054: FLARE SUITING 243-0549 YOUTHS BOOT CUT HAP SUIT YOUTHS BOOT CUT HAP SUIT YOUTHS BOOT CUT SUITING YOUTHS BOOT CUT SUITING YOUTHS BOOT CUT SUITING 243-0749 243-0829 <u>23</u> 84 243-0940 243-1010 243-15XX YOUTHS BOOT CUT FLARE-CORDURO Ro YOUTH BOOTCUT SUITING SUITING YOUTH BOOTCUT SUITING SU 243-1520 89 243-21XX 67 90 243-7341 YOUTH BOOTCUT 71 243-97XX 244-0041 HUSKY JACKET-PUYS/YOUTH WASHED 250-7041 73 LADIES WESTERN JEAN CORD LADIES WESTERN STRETCH DENIM 260-24-4 95 250-25xx 96 77 260-2641 251-0541 LADIES WESTERN SCOOP PKT JEAN LADIES WESTN SHIRT JKT HOPSCOT LADIES WESTN SHIRT JKT HOPSCOT LADIES WESTERN JACKET - DENIH LADIES WESTERN JKT WASHED DENIM LADIES HESTERN JKT-10 02 DENIM 70 99 270-194X ſω 270-2141 101 270-2149 270-2741 108 LADIES HESTERN JKT-WASHED DENN LADIES WESTM KRIT SHIRT JACKET LADIES WESTM KNIT SHIRT JACKET 103 270-2749 275-21XX 105 275-2741 LADIES WESTN KNIT SHIRT JACKET LADIES WESTN KNIT SHIRT JACKET LADIES WESTN KNIT SHIRT JACKET SCOOF FOCKET JEAN 10e 275-24XX 275-27×x 107 108 275-35X3 109 30-11-1 IEAN 110 300-19XX 111 300-33xx 309-1241 JEAN MENS CUT TEAM LOT 112 113 309-1109 FLARE LOT LADIES WEST FLARE. 319-4120 114 320-3741 SHIRT JACKET - CHAMBRA 115 340-12XX MISSES SHIRT TACKET ``` Page 3. File is "HIRITLEY: OUT. TEXT". Printed on June 11, 1987. SHIRT TACKET 340-2210 SHIRT JACKET-100ZDENIM SHIRT JACKET CHAMBRAY 118 340-2341 340-2844 119 120 JKT-PANEL REV-DENIM 340-4141 PANEL JKT BRUSHED CENM JKT-FANEL REV-WASHED MISSES ENIT SHIRT TET 121 340-4941 340-5741 122 355-0144 123 124 355-0241 MISSES KNIT SHIRT JKT JEAN BETRAIGHT LEG - WISHED STRAIGHT LEG 400-0041 400-0341 127 400-04X 400-16XX STRAIGHT LEG STRAIGHT LEG - DENIM STRAIGHT LEG-WASHED DENIM FOUR PKT BELL-ZIPPER - DENIM 129 400-1841 400-1741 FOUR PKT BELL-RUTTON-DENIM FOUR PKT BELL-WASHED 410-0841 410-0841 410-1241 133 410-35XX KNIT JEAN GPEN CONSTRUCTION FOUR PYT BELL-WASHED DIM BTN FOUR PYT BELL-WASHED 410-0741 SAILCR TEAM - WASHED DEMIM 135 410-6449 136 -10-06-1 :37 410-7041 419-8049 FOLIA PLT BELL-HASHED ONN BTH 411-02-1 FLORE 1.0 *11-03X FLARE FLARE 141 411-04XX 411-0541 HILE STRICES - CHAMPES . 43 -11-100- C 1.74 ``` DESCRIPTION SORT BY: OPERATION HPPEND /XVI CUTTING-BHADEMARK, BEPARATE, BTAMP SIZE ON COLLAR WESTREN CUTTING, HANDBTAMP, BEPARATE, BTAMP BIZE LABE STAIP - BOYS HEAVY DENIM 60 PR BTRIP JACKET YOUTHS DIRECTIONAL, 72 PAIR, MOVEN CUTTING-YOUTHS HEAVY DENIM, 60 PAIR CUTTING-YOUTHS NON-DIR, 72 PAIR, WOVEN DART AND FINISH HIP POCKET (TAB) IRECTIONAL, 72 PR WOVEN IN JACKET - DIRECTIONAL IN-DIR, 72 PAIR, WOVEN 60 PAIR 60 PAIR 60 PAIR 1 1 CUTTING-BOYS DIRECTIONS, 60 PR. MOVEN CUTTING-BOYS NON-DIR, 72 PAIR, HOVEN STRIP - BOYS DIRECTIONAL STRIP - BOYS NON-DIR - 7 - AUTO MACHINE DART BACKS – 3 IN DART – AUTO MACHIN DART BACKS – 6 IN. DART – STAY DART BART BACKS – 6 IN. DART – STAY DART DART BACKS 1 PC BACK JACKET DART FRONT LINING NON-DIRECTIONAL, 72 PR POCKETB DOEBTITCH AND PLEAT BREABT POCKET DOEBTITCH AND PLEAT LOWER POCKET OPERATION DESCRIPTION THE PROPERTY OF THE PARTY OF THE PROPERTY OF THE PARTY DECORATIVE STITCH BRADE HIP PEDECORATIVE BOUBLEFOLD GARMENT AND BRADE DOUBLEFOLD TRIP JACKET SHIRTB MEN'S MENS MENS MENB MENS MENS DE FLY FRONT CUTTING CUTTING CUTTING CUTTING CUTTING CUTTING CUTTING CUTTING CUTTINO CUTTINO CUTTING CULTING CUTTE DART EAGLECOMPO E 269W10B LOCK BT LOCK ST LOCK BT HOFFMAN HOFFMAN 39-500 MARKEM 2-16 130 E 13.0140 34.2000 23.2140 15.9420 21.3600 23.900q 26. 7300 21. 3060 21. 3060 20. 6040 19. 7760 19. 7760 19. 7760 29. 1420 29. 1420 31, 7580 47, 0460 4660 0000 9009 7000 8400 8400 8400 8400 4260 4260 0000 0000 0000 9380 9380 7220 7220 0000 0000 0000 0000 3860 5700 9060 6040 2000 6260 7580 4260 9380 888 0000-0002-00-L-0WU 83-07-03 0000-0018-00-L-0WC 83-07-29 0000-0018-00-L-0WC 83-07-30 0000-0018-00-L-0WC 83-07-30 0000-0018-00-L-0WC 83-07-30 0000-0001-00-L-0WJ 83-07-03 0000-0001-00-L-0WJ 83-07-03 0000-0025-00-L-0VJ 63-07-29-0000-0019-00-L-0MP 83-06-17 0000-0004-00-L-0MJ 83-06-24 0000-0015-00-L-0MC 85-08-05 0000-0002-00-L-0MP 85-06-20 0000-0002-00-L-0MJ 85-06-24 5-07-02 0000-ES03-00-L-0YC 85-08-06 0000-0007-00-L-0YJ 83-06-26 807-0101-00-L-0MJ B 3000-0001-00-K-MRB 0406-0101-00-L-AMJ 0406-0101-00-L-AYJ 0000-0012-00-L-0YJ 0502-0101-00-L-0HJ 3406-0101-00-L-OH 7409-0101-00-F-0A7 0406-0101-00-L-AHJ 2008-0204-00-W-0MC 2008-0204-0A-W-0MC 807-0101-00-L-0MJ 0502-0201-00-0-0CP 0502-0501-00-L-0MP 3502-0101-00-L-AHJ 302-0302-00-A-0MP 0406-0101-00-L-0MJ 0406-0101-00-L-0MP 0103-0202-00-L-0MP 2060-0203-0A-W-OMC 0114-0104-00-B-OMC 1060-0201-00-W-OMC 2060-0203-00-W-DMC OPERATION ``` ``` EXAMINE AND BRICK EXAMINE AND BRICK EXAMINE AND BRICK EXAMINE FOLDED BHIRT EXAMINE FOLDED BHIRT EYELET BREAST POCKET FACE AND CLOSE FRONT POCKET FACE AND WELT HIP POCKET EDGESTITCH AND PLEAT BREAST POCKET EDGESTITCH AND PLEAT LOWER POCKET EDGESTITCH COLLAR EDGESTITCH COLLAR EDGESTITCH FRONT - REDUCED RPH EDGESTITCH FRONTS EDGESTITCH FRONTS EDGESTITCH FRONTS EDGESTITCH FRONTS (EXTRA POINTING EDGESTITCH FRONTS (EXTRA POINTING EDGESTITCH FRONTS (EXTRA POINTING EDGEBTITCH FRONTS (EXTRA POINTING EDGESTITCH FRONTS (EXTRA POINTING EDGEBTITCH LEFT FLY DOUBLEFOLD GARMENT AND DOUBLEFOLD GARMENT AND DOUBLEFOLD GARMENT AND DRAW BACK ARMHOLE DRAW BACK LINING FACING SEACLE LINING FACING FACE BACK POCKETS FACE BACK POCKETS FACE BACK POCKETS FACE BACK POCKETS FACE EXTENBION END FACE EXTENBION END FACE FONT POCKET & BRICK UB$1300-Z | EAGLECOMPO E 5800 2 MD3 PFAFF 463 PFAFF 463 REECE 101 281~3 LOCK 8T 281-3 -ORMASTER -ORMAGTER RECE 101 LOCK ST LOCK ST LOCK ST LOCK ST OCK ST OCK ST FAFF463 FAFF463 PFAFF483 FAFF463 FAFF463 LOCK ST LOCK ST 61900 251-11 251-2 241-12 LH515 TAND TAND 9380 7220 7220 0000 0000 1000 9000 0000 0340 3000 3466 5016 6360 6360 7720 9969 7720 4000 2000 2740 4000 2000 0000 0000 0000 0000 0090 0090 B000 9520 4000 3000 86-01-21, 86-01-21 86-01-23 85-09-20 85-09-20 85-07-02 85-06-25 85-07-01 85-10-16 86-01-23 83-08-06 86-01-14 83-09-19 B6-01-0B 86-01-07 B6-01-0B 86-01-08 85-08-07 B5-07-31 85-08-07 86-01-13 86-01-15 35-06-17 85-09-27 85-09-19 B6-01-24 1807-0101-90-L-6HJ B 1807-0101-00-L-6HJ B 2100-0102-00-H-0MC B 2060-0203-00-H-0MC B 2060-0203-04-H-0MC B 1803-0503-00-1-MRB 8 1803-0903-00-1-MRB 8 1803-0903-00-W-MRB 8 1803-0903-00-W-MRB 8 1803-0503-00-D-MRB 8 1803-0503-00-D-MRB 8 0114-0104-00-B-0MC 0117-0104-00-B-0MC 1901-0207-00-R-WRB 1903-0205-00-M-OMC 0402-0701-00-0-0CB 0402-0701-00-X-0CB 0103-0202-00-1-008 0311-1102-00-L-OMC 0117-0101-00-B-0MC 0106-0102-00-G-0CP 0401-0200-00-0-0CP 0311-1101-00-L-0MC 0201-0601-00-P-0MJ 0114-0101-00-B-OMC 1212-0712-00-X-0CP 1212-0712-00-X ``` ``` JACKET JACKET JACKET JACKET 110 FELL LINING 110 FELL LINING 110 FELL LINING 110 FELL LINING 1110 FELL LINING 1111 FELL BEAT 1111 FELL BLEEVE FELVE FELV FELL BACK YOKE AND JOIN SHOULDERS FELL BACK YOKE TO BACK FELL BACKS FELL BOTTOMS 23 FELL BOTTOMS 24 FELL FRONT YOKES - FF - JKTS JFF FELL FRONT YOKES - FF - JKTS YO FF CASH POCKE HIP POCKET 14 FACE LINING POCKET TACE LOWER POCKET AND MAKE CASH POCKET FACE BLEEVE FALE STITCH HIP POCKET FALBE BITTCH BACK POCKET FANFOLD LENOTHWISE CROSSWISE FANFOLD TOP OF DRAPE CROSSWISE FELL BACK GORES - CHRYED GORES FELL BACK GORES - STRAIGHT GORES FELL BACK GORES - BTRAIGHT GORES FELL BACK GORES ADD BACK YOKE FELL BACK GORES AND BACK YOKE CORES AND BACK YOKE CORES AND YOKE - REDUCED BACK BACK BACK CHAIN ST DEARBORN F LEWIS30-23 F LEWIS30-23 F CHAIN ST 241-12 5NGR281-1 5NGR281-14 FFAFF 463 61900 61900 LEWIB30210 F LEWIB30210 F LEWB240-16 F CH8T CH8T CHAIN BT BT6-B926-5 CONVNIC EGP CHAIN BT ST 56-500 56500 CHAIN ST CHAIN ST CHAIN ST CHAIN ST CHAIN CHAIN 231-7 4000 0000 0000 0000 0000 1000 4380 4380 1720 1720 4180 3140 3140 3250 3000 4880 0000 0000 6320 0000 7000 8660 8660 8660 0760 0760 0000 0000 888 6320 0006 2000000 09-19 02-04 02-04 02-04 08-03 -09-19 -08-07 0801-0101-00-Y-WS 2001-0301-00-B-OHC 2007-0502-00-L-OHC 2007-0502-00-L-OHC 2007-0902-00-L-AYC 2007-0901-00-L-OHC 2007-0901-00-L-OHC 2007-0901-00-L-OYC 2007-0501-00-L-AHC 2007-0501-00-L-AYC 2001-0307-00-H-OHC 1903-0204-00-H-OHC 0402-0202-00-P-0HJ 1803-3006-00-V-CBD 2040-0201-00-W-0HC 2001-0304-00-U-MRB 0413-0904-00-I-0CB 1803-3004-00-V-CBD 1803-7-00-E081 0503-0302-00-L-0HC 2009-0206-00-T-MRB 0303-0401-00-L-OMC 0503-0301-00-L-04C 0503-0301-00-L-0YC 0503-0601-00-L-0MC 0503-0601-00-L-0MC 0503-0601-00-L-AMC 0303-0201-00-H-0VB 0503-0302-00-L-0MC 0309-0701-00-L-0MC 0309-0701-00-L-0YC 0309-0701-00-L-AMC 0901-0301-00-E-0C0 2001-0305-00-W-0MC 2001-0305-0A-W-0MC 0503-0601-00-L-0VC 0503-0302-00-L-AMC 0503-0403-00-L-OMC 0309-0701-00-L-OMC 0309-1101-00-L-0WC 2007-0403-00-W-OMC 2007-0502-00-L-AMC -04-H-0MC 0309-1101-00-L-AMC 0309-1101-00-L-AYC 2007-0502-00-L-0YC 1001-0106-00-A-04F 0309-1101-00-L- -A-00-COE0-COH ``` SAME SAME FOR THAT OPERATION | | | OPERATION: 000 | 0-0001-00- | D-MRS DESCRIPTION CUTTING | |
--|------|--|--|--|---| | | | , . | | 5 mg 525min 115m 55, 11m | | | _ | | STYLE NUMBER | SAM | STYLE DESCRIPTION | | | - | | | | | - | | | | AC1-2000 | 0 00000 | MENS | | | | | AC2-2000 | 0. 00 000 | MENS | | | | | | | | _ | | • | | DATE 06/17/87 | , | | | | | | OPERATION: 000 | xx-0001-00- | H-MSS DESCRIPTION: CUTTING | | | | | | | CTU C DECCRETATION | | | | | STYLE NUMBER | | STYLE DESCRIPTION | _ | | | | KSE-4000 | | | | | | ŧ | | 0.00000 | | | | | | | | | | | | | | | | - | | , | | DATE 06/17/87 | | L-OMU DESCRIPTION: CUTTING | | | | | | | | | | | | STYLE NUMBER | SAM /100 | STYLE DESCRIPTION | | | | | | | | - | | | | 200-0041 | 89 14200 | MENS - ZIPPER FLY | | | | | 200-0141 | 89 14200 | MENS JEAN - RUTTON ELV | | | | | 200-0341 | 89 14200 | MENS BOOT CUT RIDER | | | | | 200-20 x x | 89 14200 | STRAIGHT LEG RIDER - TWILL | | | | | 200-7041 | 89 14200 | MENS BOOT CUT RIDER - WASHED | | | | | 200-7241 | 89 14200 | MENS SLIM - ZIPPER FLY MENS JEAN - BUTTON FLY MENS BOOT CUT RIDER STRAIGHT LEG RIDER - TWILL MENS BOOT CUT RIDER - WASHED MENS SLIM - WASHED MENS SLIM - WASHED MENS SLIM - WASHED MENS BOOT CUT FLARE MIDE - WASHED MENS BOOT CUT FLARE | | | | | 201-0541 | 89.14200 | LP ROCT CUT | | | | | 201-0941 | 89.14200 | MENS BOOT CUT FLARE | | | | | 202-0341 | 89. 14200 | WIDE TLARE | | | ٠ س | - | 202-0441 | 89.14200 | HIDE FLARE | | | | ١. | 202-0449 | 89 14200 | MENS CUT JEAN COMMISSION | | | 2 · 2 · 42 · 52 · 53 · 53 · 53 · 53 · 53 · 53 · 5 | ,5" | 307-1109 | 89 14200 | FLARE | | | | | 400-0041 | 89 14200 | JEHN | | | | | 400-0341 | 89. 14200 | HIDE FLARE HIDE FLARE HIDE FLARE HENS CUT JEAN JEAN STRAIGHT LEG - HASHED | | | | | 411-0241 | 84 14500 | FLARE | | | | | 411-2041 | 89 14200 | WIDE STRIDER - CHAMBRAY FLARE - WASHED | | | | | 411-3141 | 89. 14200 | SUPER BELL | | | | | DATE 06/17/8 | 7 | | | | | | OPERATION: 000 | 00-0001-00- | -D-HRS DESCRIPTION: CUTTING | | | | | | | | | | and the second second | _نند | STYLE NUMBER | SAM/100 |
STYLE DESCRIPTION | | | ne postine receive est | -ننڌ | STYLE NUMBER | | · | _ | | ne spingting s spanitie sta | خند | AC1-2000 | 0. 00000 | MENS'S REGULAR DRESS SHIRT | - | | <u>.</u> | نند | AC1-2000 | 0. 00000 | · | - | | | | AC1-2000 | 0. 00000
0. 00000 | MENS'S REGULAR DRESS SHIRT | - | | <u>.</u> | 1 | AC1-2000
AC2-2000
DATE: 06/17/8 | 0. 00000
0. 00000 | MENS'S RECULAR DRESS SHIRT
MENS'S RECULAR DRESS SHIRT | | | <u>.</u> | | AC1-2000
AC2-2000
DATE: 06/17/8 | 0. 00000
0. 00000 | MENS'S REGULAR DRESS SHIRT | | | | | AC1-2000
AC2-2000
DATE: 06/17/8
OPERATION: 000 | 0. 00000
0. 00000
7
00-0001-00- | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING | - | | | | AC1-2000
AC2-2000
DATE: 0a/17/B'
OPERATION: 000
STYLE NUMBER | 0. 00000
0. 00000
7
00-0001-00-
SAN /100 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION | - | | a mineral position of | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000 | 0. 00000
0. 00000
7
00-0001-00-
SAR //00 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT | | | | | AC1-2000
AC2-2000
DATE: 0a/17/B'
OPERATION: 000
STYLE NUMBER | 0. 00000
0. 00000
7
00-0001-00-
SAR //00 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION | | | a mineral position of | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000 | 0. 00000
0. 00000
7
00-0001-00-
SAR //00 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT | | | a mineral position of | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8: | 0.00000
0.00000
700-0001-00-
SAN /100
0.00000 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT MEN'S SPORT SHIRT | | | a mineral position of | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8: | 0.00000
0.00000
700-0001-00-
SAN /100
0.00000 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT | | | a mineral position of | | AC1-2000
AC2-2000
DATE: 08/17/8'
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8'
OPERATION: 000 | 0.00000
0.00000
7
00-0001-00-
SAR /100
0.00000
0.00000 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION HEN'S SPORT SHIRT MEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8: | 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT MEN'S SPORT SHIRT | | | a mineral position of | | AC1-2000
AC2-2000
DATE: 08/17/8'
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8'
OPERATION: 000
STYLE NUMBER
200-0041 | 0.00000
0.00000
7
00-0001-00-
SAR /100
0.00000
0.00000
7
00-0001-00-
SAM /100 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT MEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS STYLE DESCRIPTION | | | The second secon | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0141 | 0.00000
0.00000
700-0001-00-
SAR /100
0.00000
0.00000
700-0001-00-
SAM /100
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT MEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS STYLE DESCRIPTION | | | The second secon | | AC1-2000
AC2-2000
DATE: 0a/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 0a/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0141
200-0241 | 0.00000
0.00000
7
00-0001-00-
SAN /100
0.00000
0.00000
7
00-0001-00-
SAM /100
89 14200
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT MEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS - ZIPPER FLY MENS JEAN - BUTTON FLY | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0141 | 0.00000
0.00000
700-0001-00-
SAR /100
0.00000
0.00000
700-0001-00-
SAM /100
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT MEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS STYLE DESCRIPTION | | | | | AC1-2000
AC2-2000
DATE: 0a/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 0a/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0141
200-0241
200-0241
200-0241
200-020X
200-7041 | 0.00000
0.00000
7
00-0001-00-
SAM /100
0.00000
0.00000
7
00-0001-00-
SAM /100
89 14200
89 14200
89 14200
89 14200
89 14200
89 14200
89 14200
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS STYLE DESCRIPTION MENS JEAN - ZIPPER FLY MENS JEAN - BUTTON FLY MENS BOOT CUT STRAIGHT LEG THENS BOOT CUT STRAIGHT LEG THENS BOOT CUT STRAIGHT LEG THENS BOOT CUT THE | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0141
200-0241
200-0341
200-20XX
200-7241 | 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
5AM /100
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT -H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT HEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS SOUT CUT STREET MENS SOUT CUT STREET STREET SHIPER FLY MENS BOOT CUT STREET HENS BOOT CUT STREET MENS C | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-2034
200-7041
200-7041
200-7341 | 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
7
00-0001-00-
SAM /100
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT | | | | | AC1-2000
AC2-2000
DATE: 0a/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 0a/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-0241
200-7241
200-7241
200-7241
200-7341
201-0341 | 0.00000
0.00000
7
00-0001-00-
SAM /100
0.00000
0.00000
7
00-0001-00-
SAM /100
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT MEN'S SPORT SHIRT HEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS SELECTION STRAIGHT LEG TO THILL HENS BOOT CUT THILL MENS SLIPTION MENS MENS MENS MENS MENS MENS MENS | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-2034
200-7041
200-7041
200-7041 | 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
7
00-0001-00-
SAM /100
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT | | | | | AC1-2000
AC2-2000
DATE: 0a/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 0a/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-201
200-7241
200-7241
201-0541
201-0541
201-0541
201-0941
202-0341 | 0.00000 0.00000 7 00-0001-00- SAN /100 0.00000 0.00000 7 00-0001-00- SAN /100 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS SUBJECT SHIPPER FLY MENS BOOT CUT STRAIGHT LEG MENS SLIP SHAPED MENS SLIP SHAPED MENS SLIP SHAPED MENS BOOT CUT FLARE WIDE FLARE/MASHED | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0141
200-0241
200-0241
200-20341
200-7341
200-7341
201-0541
201-0541
201-0541
202-0341
202-0341
202-0449 | 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT | - | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE
NUMBER
200-0041
200-0241
200-0241
200-20341
200-20341
200-7241
200-7241
201-0541
201-0541
201-0941
202-0441
202-0449
202-0449
209-0241 | 0.00000
0.00000
0.00000
0.00001-00-
SAR //00
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000 | MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT - L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION HENS'S SLIN - ZIPPER FLY HENS JEAN - BUTTON FLY HENS BOOT CUT - TWILL HENS BOOT CUT - HASHED HENS SLIN - WASHED HENS SLIN - WASHED HENS SLIN - HASHED HENS SLIN - HASHED HENS BOOT CUT FLARE WIDE FLA | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-7041
200-7041
200-7041
201-0541
201-0541
201-0541
202-0449
109-0241
102-0449
109-0241
109-0241
109-0241
109-0241
109-0241 | 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT MEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS SLIH - ZIPPER FLY MENS BOOT CUT STRAIGHT LEG - THILL MENS BOOT CUT HENS FLARE WIDE FLARE MIDE FLARE MIDE FLARE MIDE FLARE MIDE FLARE MENS CUT JEAR LOT | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-20341
200-7341
201-0541
201-0541
201-0541
202-0441
202-0441
202-0449
309-0241
309-0241
309-0241
309-0241
309-0241
309-0241
309-0241
309-0241
309-0241 | 7,00-0001-00- SAM /100 0,000000 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT H-MSS DESCRIPTION: CUTTING STYLE DESCRIPTION MEN'S SPORT SHIRT HEN'S SPORT SHIRT -L-OMJ DESCRIPTION: CUTTING STYLE DESCRIPTION MENS SOUT CUT TIPPER FLY MENS BOOT CUT TIPPER FLY MENS SOUT CUT TIPPER FLY MENS BOOT CUT TIPPER FLY MENS SOUT CUT TIPPER FLY MENS BOOT TIPPE | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-7241
200-7241
201-0541
201-0541
201-0541
202-0449
202-0449
202-0449
202-0449
209-0241
309-1109
400-0041
401-0241 | 0.00000
0.00000
7
00-0001-00-
SAN /100
0.00000
0.00000
7
00-0001-00-
SAN /100
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-7041
200-7041
200-7041
201-0541
201-0541
201-0541
202-0449
109-0241
109-0241
109-0241
109-0241
109-0241
109-0341
109-0341
109-0341
109-0341
109-0341
109-0341
109-0341
109-0341
109-0341
109-0341
109-0341
119-040 | 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200
89.14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-7241
200-7241
201-0541
201-0541
201-0541
202-0449
202-0449
202-0449
202-0449
209-0241
309-1109
400-0041
401-0241 | 0.00000
0.00000
7
00-0001-00-
SAN /100
0.00000
0.00000
7
00-0001-00-
SAN /100
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HENS'S SLIH - ZIPPER FLY HENS BOOT CUT HENS BOOT CUT HENS BOOT CUT HENS BOOT CUT HENS SLIH - HASHED HENS SLIH - HASHED HENS SLIH - HASHED HIDE FLARE - CHAMBRAY FLARE - WASHED | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-20341
200-7341
201-0541
201-0541
201-0541
202-0441
202-0449
309-0241
309-0241
309-0241
309-0241
309-0241
411-1044
411-1044 | 0.00000
0.00000
7
00-0001-00-
SAR //00
0.00000
0.00000
0.00000
7
00-0001-00-
SAM //00
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
ASE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE
NUMBER
200-0041
200-0141
200-0241
200-2014
200-2014
200-2014
200-2014
200-2014
200-2014
200-2014
200-2014
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0941
202-0449
209-0241
209-0241
209-0241
209-0241
209-0241
209-0241
209-0241
209-0241
209-0241
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201-0541
201- | 0.00000
0.00000
700-0001-00-
SAM //00
0.00000
0.00000
700-0001-00-
SAM //00
89 14200
89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HENS'S SPORT SHIRT HENS STYLE DESCRIPTION HENS SOUT CUT TO FLY HENS BOOT CUT TO HASHED HENS BOOT CUT TO HASHED HENS BOOT CUT THARE HIDE THARE HIDE FLARE HASHED SUPER BELL HIDE HASHED HASHED DENIM CANADIAN BIG BELL 14 0Z DENIM | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0141
200-0241
200-0241
200-2014
200-7241
200-7241
200-7241
200-7241
201-0541
201-0541
202-0449
202-0449
202-0449
202-0449
202-0449
109-1109
400-0041
411-0241
411-0241
411-0241
411-3941
411-3941
411-4049 | 0.00000 0.00000 7 00-0001-00- SAM /100 0.00000 0.00000 7 00-0001-00- SAM /100 89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT MEN'S SPORT SHIRT MEN'S SPORT SHIRT HEN'S SPORT SHIRT HENS'S SPORT SHIRT - COMPANY MENS STATE OF THE STATE OF THE SHIPPER FLY MENS SEIN - ZIPPER FLY MENS SEIN - ZIPPER FLY MENS SEIN - SUPPER FLY MENS BOOT CUT - HASHED MENS SEIN - HASHED MIDE FLARE HASHED SUPER BELL MIDE MASHED SUPER BELL MIDE MASHED MASHED MASHED MASHED MASHED MASHED MASHED | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-7341
200-7341
201-0541
201-0541
201-0541
202-0449
309-0241
309-0241
309-0241
411-0241
411-0241
411-1044
411-3141
411-3141
411-3141
411-4049
411-4049
411-4049 | 0.00000 0.00000 0.00000 7 7 00-0001-00- SAM /100 0.00000 0.00000 7 00-0001-00- SAM /100 89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HENS'S PORT SHIRT HENS'S PORT SHIRT HENS SOUT CUTTING STYLE DESCRIPTION HENS SOUT CUTTING HENS BOOT CUTTI | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
ASE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0141
200-0241
200-0241
200-2014
200-7241
200-7241
200-7241
200-7241
201-0541
201-0541
202-0449
202-0449
202-0449
202-0449
202-0449
109-1109
400-0041
411-0241
411-0241
411-0241
411-3941
411-3941
411-4049 | 0.00000 0.00000 7 00-0001-00- SAM /100 0.00000 0.00000 7 00-0001-00- SAM /100 89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT MEN'S SPORT SHIRT MEN'S SPORT SHIRT HEN'S SPORT SHIRT HENS'S SPORT SHIRT - COMPANY MENS STATE OF THE STATE OF THE SHIPPER FLY MENS SEIN - ZIPPER FLY MENS SEIN - ZIPPER FLY MENS SEIN - SUPPER FLY MENS BOOT CUT - HASHED MENS SEIN - HASHED MIDE FLARE HASHED SUPER BELL MIDE MASHED SUPER BELL MIDE MASHED MASHED MASHED MASHED MASHED MASHED MASHED | | | | | AC1-2000
AC2-2000
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
KSE-4000
KSE-4001
DATE: 06/17/8:
OPERATION: 000
STYLE NUMBER
200-0041
200-0241
200-0241
200-0241
200-0241
200-7041
200-7041
200-7041
201-0541
201-0541
201-0541
202-0441
202-0441
202-0441
202-0441
411-0241
411-0241
411-1044
411-2041
411-3141
411-3141
411-3141
411-4049
411-4949 | 0.00000 0.00000 7 700-0001-00- SAR //00 0.00000 0.00000 7 00-0001-00- SAM //100 89 14200 | MENS'S REGULAR DRESS SHIRT MENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S REGULAR DRESS SHIRT HENS'S PORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HEN'S SPORT SHIRT HENS'S PORT SHIRT HENS'S PORT SHIRT HENS'S PORT SHIRT HENS'S PORT SHIRT HENS'S SUBJECT COUNTY OF THE SHIP S | | APPENDIX YVII CATE 06/17/87 PERATION 0000-0001-00-L-ONU DESCRIPTION: CUTTING DATE: 06/17/87 OPERATION: 0000-0003-00-L-ONJ DESCRIPTION: CUTTING MENS DIREC STYLE NUMBER SAH/100 STYLE DESCRIPTION 103. 66200 LADIES HESTERN JEAN CORD 103. 66200 JEAN LAD 260-25XX JEAN LADIES DATE: 06/17/87 OPERATION: 0000-0004-00-L-OMJ DESCRIPTION: CUTTING MENS/DIREC SAM /100 STYLE DESCRIPTION STYLE NUMBER BOOT CUT TO MENS 200-10XX 90. **57000** 90. **57000** BOOT CUT FLARE BOOT CUT 201-23XX 90. 57000 DATE 06/17/87 OPERATION: 0000-0005-00-L-0YJ DESCRIPTION: CUTTING BOYSNONDIR SAM /100 STYLE NUMBER STYLE DESCRIPTION 205-10XX BOYS BOOT CUT 73.01400 BOYS BOOT CUT 205-12XX 73.01400 BOOT CUT 73. 01400 73. 01400 73. 01400 242-0029 242-0109 BOYS BOOT CUT 4-PKT BELL-BUTTON FLY BOYS 4-PKT BELL-BUTTON FLY BOYS 4-PKT BELL-BUTTON FLY BOYS 4-PKT BELL-BUTTON FLY 73. 01400 73. 01400 242-0441 242-0829 73. 01400 73. 01400 73. 01400 242-0940 242-1010 242-1620 242-21XX 242-7341 73. 01400 73. 01400 73. 01400 73. 01400 73. 01400 242-97XX 420-0841 BOYS FLARE - SUITING 420-26XX 73.01400 DATE: 06/17/87 CPERATION: 0000-0006-00-L-0YJ DESCRIPTION: CUTTING STYLE NUMBER SAN/100 STYLE DESCRIPTION BOYS BOOT CUT SOYCONST 205-0341 78. 21600 78. 21600 BOYS @ 240-7041 78. 21600 78. 21600 78. 21600 BOYS WASH WASHED 242-0541 BOYS BOOT CUT BOYS HUSKY BOOT CUT BOYS STRAIGHT LEG HAS BOYS STRAIG LEG HASH MENS BOYS FLARE HASH MENSCONST HIDE BOYS HASH MEN 242-5041 420-0041 78. 21600 78. 21600 420-02XX 78. 21600 78. 21600 78. 21600 420-0341 420-2041 420-4041 420-4049 78, 21600 PAGE: 4 DATE: 06/17/87 CPERATION: 0000-0007-00-L-OYJ DESCRIPTION: CUTTING BOYS DIREC STYLE NUMBER SAM/100 STYLE DESCRIPTION BOOT CUT (BOYS CONST.) BOYS CORDURDY BOOT CUT BOYS BOOT CUT -NAPSUITING BOYS BOOT CUT FLARE -CORDURDY BOYS STRAIGHT LEG CORDURD BOYS FLARE-CORD-HENSCONST BOYS HIDE CANADA CORD 203-14XX 85. 62600 85. 62600 85. 62600 205-14XX 242-15XX 85. 62600 420-16XX 85. 62600 420-25XX 85. 62600 420-35XX 85, 62600 DATE: 06/17/87 OPERATION: 0000-0008-00-L-OYJ DESCRIPTION: CUTTING YOUTHS STYLE NUMBER SAM /100 STYLE DESCRIPTION YOUTHS BOOT CUT YOUTHS BOOT CUT YOUTHS BOOT CUT YOUTHS BOOT CUT 75. 94200 203-10XX 75. 94200 75. 94200 75. 94200 75. 94200 75. 94200 75. 94200 75. 94200 75. 94200 203-12XX 243-0029
243-0109 YOUTHS BOOT CUT 243-0249 243-0441 BOOTCUT YOUTHS BOOT CUT SUITING YOUTHS BOOT CUT SUITING YOUTHS BOOT CUT SUITING 243-0549 243-0829 243-0940 75. 94200 75. 94200 75. 94200 75. 94200 75. 94200 YOUTHS BOOT CUT SUITING YOUTH BOOTCUT PUERTO RICO SUIT YOUTH BOOTCUT PUERTO RICO STUDENT 4-PKT BELL-BUTTON FLY 243-1010 243-1620 243-21XX 243-97XX 75 94200 23-0841 SAM = SAM PER 100 TO CONTRIBUTION OF AN OPERATION TO A STYLE BREED ON: SAMOP X 100 | | PACED ON: SAMOP | |---|---| | DATE: 07/09/87 OPERATION: 0106-0102-00-0-0CP STYLE NUMBER SAM TOTAL OPS | SAM: 96.4000 DESCRIPTION: FACE/CLOSEFRT POCKET % OF STYLE STYLE DESCRIPTION | | T-7200 2550.70000 53 | 3.779 DRESS PANT | | T-7201 2511.21000 54 | | | T-7202UFS 2400.30000 55 | 4.016 DRESS FANT | | DATE: 07/09/87 | SAM: 136.2000 | | | DESCRIPTION: SET BEARER& FACING | | | % OF STYLE STYLE DESCRIPTION | | W7543 5468.20000 49 | 2.482 TROUSER WOODLAND CAMOUFLAGE
2.578 TROUSER WOODLAND CAMOUFLAGE | | W7548F1 5283.0000 49 | 2.578 TROUSER WOODLAND CAMOUFLAGE | | DATE: 07/09-37 | SAM: 11.3000 | | GPERATION: 0106-0103-00-0-00F | DESCRIPTION: TURN FRONTFOCKET % OF STYLE STYLE DESCRIPTION | | | % OF STYLE STYLE DESCRIPTION | | T-7200 2550 20000 53 | O WAR | | T-7201 2511.21000 54
T-7202UPS 2400.30000 55 | 0.450 DRESS PANT | | T-7202UPS 2400.30000 55 | 0.471 DRESS PANT | | DATE: 07/09/87 | SAM: 20.7000 | | CPERATION: 0106-0201-00-G-005 | DESCRIPTION: CLOSE FRT POCKET | | STYLE NUMBER SAM TOTAL OPS | % OF STYLE STYLE DESCRIPTION | | MJ-7200 2163.40000 48 | | | : | SAM: 29,9040 | | GFERATION: 0106-0202-00-L-0WP | SAM: 29.9040
DESCRIPTION: CLOSE FRT POCKETS | | STYLE NUMBER SAM TOTAL OPS | % OF STYLE STYLE DESCRIPTION | | 110-50XX 2193.04800 50 | 1.364 PANTS | | | | | 118-2041 2095.95000 49
118-37XX 2092.75800 49 | | | 119-70xX 2152.43400 50 | 1.389 WORK PANT | | 118-95%% R144.02800 50 | | | DATE: 07/09/87 | GAM: 22.9000 | | GPERATION: 0106-0203-00-P-0MJ | DESCRIPTION: CLOSE FRT PKT FACING | | STYLE NUMBER SAM TOTAL OPS | % OF STYLE STYLE DESCRIPTION | | 85-7500 1074.20000 37 | 2.132 BASIC 5-PKT WESTERN JEAN | | , | | | DATE: 07/09/67 | SAM: 33.4020
DESCRIPTION: CLOSE SCP FRT PKTS | | STYLE NUMBER SAM TOTAL OPS | MORE STYLE STYLE DESCRIPTION | | | | | | POGE: 5.5 | APPENDIX XVIII +10-35xx 1961.07000 46 1.703 KNIT JEAN OPEN CONSTRUCTION CATE: 07/09/87 SAM: 62.4000 DESCRIPTION: BUTTONHOLERA FLARSPC STYLE NUMBER SAM TOTAL OFS % OF STYLE STYLE DESCRIPTION #7546 S498.20000 49 1.137 TROUSER WOODLAND CAMBUFLAGE #7546F1 5283.00000 49 1.181 TROUSER WOODLAND CAMBUFLAGE CATE: 07/09/87 SAM: 54.0000 DESCRIPTION: JOIN EM TAB/FLAP STYLE NUMBER SAM TOTAL OPS % OF STYLE STYLE DESCRIPTION ``` CANADIAN BIG BELL 14 HZ BENIM 42 3.207 411-4041 1519.33500 WIDE WASHED 411-4041 411-4049 1631.04000 42 3.174 1547.18400 40 3.346 JEAN CHUADA DENIM 411-4741 411-4949 1749.78600 2.959 JEAN WASHED DENIM →3 411-5941 1544.57000 SUPER BELL - NASHED 3.148 42 MENS - WASHED 413-5047 1556.29800 44 3.126 STRIP JEAN-WASHED 1-031FM -12-3741 1574.23200 41 3.056 STRIP JEAN-REVERSE14027EN -18-5-J-1 1654.22400 41 3.130 STRIP JEAN-WASHED REV CEN +18-c5+1 1584.53800 41 3.073 STRIP JEAN - 14 GO DENIM 1654 22400 3.130 DATE: 07/09/87 SAM: 51.7740 GRERATION: 0108-0101-00 L-0WJ DESCRIPTION: SET SCOOP FRT FLT STYLE NUMBER SAM TOTAL OPS % OF STYLE STYLE DESCRIPTION 1631.17200 ≒≥ 3.174 LADIES WESTERN STRETCH DEMIN 250-25-1 LADIES WESTERN SCOOP FLT JEAN SCOOP POCKET JEAN LADIES 3.103 251-0541 1668.51800 43 300-1141 1425.04800 37 3.633 1562.733.0 TEAN LADIES 40 3.114 nate: 07/09/87 SAM: 51.4250 DEERATION: 0108-0101-00-6-00F DESCRIPTION: SET SCOOP FRT PLT STYLE NUMBER SAM TOTAL OPS % OF STYLE STYLE DESCRIPTION 1611.11400 3.172 PHILLIPS - FLARE SAM: 51.7740 DATE: 07/09/87 GPERATION: 0108-0101-00-L-07J DESCRIPTION: SET SCOOP FRT PET STYLE NUMBER SAM TOTAL OFS % OF STYLE STYLE DESCRIPTION YOUTHS BOOT CUT BOYCCHST 1403.54200 3.637 203-0341 42 1418.54400 BOYS BOOT CUT SOYCONST 205-0341 42 3.650 1335.67800 240-0041 40 3.876 BOYS 240-7041 WASHED 🗨 1498.24800 43 3.456 BOYS 241-0041 1302.58800 40 3.975 YOUTHS • 1503.24600 43 3.444 YOUTH (R MASHED 2-1-7041 1547.05200 BOYS BOOT CUT 242-0541 44 3.347 BOYS BOOT CUT 49 -MAPSUITING 242-0629 1662.71400 3.114 242-0749 BOYS BOOT CUT 1592.78400 49 3.251 NAFSUITING BOYS HUSKY BOOT CUT 242-5041 1375.41000 41 3.708 BOYS BOOT CUT WASHED YOUTH BOOT CUT FLARE YOUTH BOOT CUT NAP SUIT 242-7341 1519.11000 43 3.408 2.980 1737.24600 47 243-0541 243-0629 1622.34400 47 3,190 -NAP SUIT 1622.84400 243-0749 YOUTH BOOT CUT 47 3.190 243-5041 1401.46860 4.1 3.594 YOUTH HUSKY BOOT OUT 2+3-73+1 1503.24600 43 3.444 YOUTHS BOOT CUT WELL WASHED 244-0041 1234.27200 40 4.195 HUSKY C 420-0041 STRAIGHT LEG WAS 1576.09200 42 3.285 BOYS 1420.77600 39 BOYS . FLARE 420-02XX 3.644 STRAIG LEG WASH MENS 1607.70000 42 3.220 BOYS # 420-0341 1592.38800 3.251 BOYS FLARE WASH MENSCONST 42 420-2041 BOYS 1402 DEN MEN 420-4041 1429.04400 40 3.623 WIDE @ BOYS WASH 420-4049 1502.69600 43 3.230 421-4041 1511.82800 3.212 BOYS STRIP JEAN HEVERSE DEN BOYS STRIP JEAN-BRUSHED DEN BOYS STRIP JEAN-WASHERSHDEN 421-8041 1632.52800 3.171 421-2049 1662.94200 42 3.113 +23-00+1 1584.87000 42 STUDENT STRAITLEG WAS STUDENTS FLARE 3.267 423-02XX 1420.01400 39 3.646 423-0341 1616.47800 42 3.203 YOUTH STRAIT LEG WASH MEN →23-2041 1570.79200 STUDENT 42 3.255 FURE WAShensconst +23-+041 1440.57600 40 3.594 WIDE STUDENT 1402DENMEN 423-4049 1611.47400 43 3.213 WIDE . STUDENT WASH 1631.17200 424-5041 3.174 STUDENTS - STRIP REVERSE DEN 1619.70000 319-127X YOUTHS STRAIGHT LEG 3.197 1616: HT/09/97 SAM: 51.4250 ``` DESCRIPTION: SET SCOOP FRT PET GPERATION: 0108-0101-00-L-AMJ THE MARKE DATED FILM 8-D1/